Skip to main content

Advertisement

Log in

The Immunomodulatory Potential of Mesenchymal Stem Cells in a Retinal Inflammatory Environment

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Retinal degenerative disorders are characterized by a local upregulation of inflammatory factors, infiltration with cells of the immune system, a vascular dysfunction and by the damage of retinal cells. There is still a lack of treatment protocols for these diseases. Mesenchymal stem cell (MSC)-based therapy using immunoregulatory, regenerative and differentiating properties of MSCs offers a promising treatment option. In this study, we analyzed the immunomodulatory properties of mouse bone marrow-derived MSCs after their intravitreal delivery to the inflammatory environment in the eye, caused by the application of pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ. The intravitreal administration of these cytokines induces an increased expression of pro-inflammatory molecules such as IL-1α, IL-6, inducible nitric oxide synthase, TNF-α and vascular endothelial growth factor in the retina. However, a significant decrease in the expression of genes for all these pro-inflammatory molecules was observed after the intravitreal injection of MSCs. We further showed that an increased infiltration of the retina with immune cells, mainly with macrophages, which was observed after pro-inflammatory cytokine application, was significantly reduced after the intravitreal application of MSCs. The similar immunosuppressive effects of MSCs were also demonstrated in vitro in cultures of cytokine-stimulated retinal explants and MSCs. Overall, the results show that intravitreal application of MSCs inhibits the early retinal inflammation caused by pro-inflammatory cytokines, and propose MSCs as a promising candidate for stem cell-based therapy of retinal degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kauppinen, A., Paterno, J. J., Blasiak, J., Salminen, A., & Kaarniranta, K. (2016). Inflammation and its role in age-related macular degeneration. Cellular and Molecular Life Sciences, 73, 1765–1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang, Y., Enzmann, V., & Ildstad, S. T. (2011). Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Reviews and Reports, 7, 434–445.

    Google Scholar 

  3. Cislo-Pakuluk, A., & Marycz, K. (2017). A promising tool in retina regeneration: current perspectives and challenges when using mesenchymal progenitor stem cells in veterinary and human ophthalmological applications. Stem Cell Reviews and Reports, 13, 598–602.

    Google Scholar 

  4. Oh, J. Y., Kim, M. K., Shin, M. S., Wee, W. R., & Lee, J. H. (2009). Cytokine secretion by human mesenchymal stem cells cocultured with damaged corneal epithelial cells. Cytokine, 46, 100–103.

    CAS  PubMed  Google Scholar 

  5. Shi, M., Liu, Z. W., & Wang, F. S. (2011). Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clinical and Experimental Immunology, 164, 1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Akiyama, K., Chen, C., Wang, D. D., Xu, X., Qu, C., Yamaza, T., Cai, T., Chen, W. J., Sun, L., & Shi, S. (2012). Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand/FAS-mediated T cell apoptosis. Cell Stem Cell, 10, 544–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Luz-Crawford, P., Kurte, M., Bravo-Alegria, J., et al. (2013). Mesenchymal stem cells generate a CD4+ CD25+ Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Research & Therapy, 4, 65–77.

    CAS  Google Scholar 

  8. Meirelles, L. S., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20, 419–427.

    CAS  Google Scholar 

  9. Jiang, T. S., Cai, L., Ji, W. Y., Hui, Y. N., Wang, Y. S., Hu, D., & Zhu, J. (2010). Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Molecular Vision, 16, 1304–1316.

    PubMed  PubMed Central  Google Scholar 

  10. Nieto-Miguel, T., Galindo, S., Reinoso, R., Corell, A., Martino, M., Pérez-Simón, J. A., & Calonge, M. (2013). In vitro simulation of corneal epithelium microenvironment induces a corneal epithelial-like cell phenotype from human adipose tissue mesenchymal stem cells. Current Eye Research, 38, 933–944.

    CAS  PubMed  Google Scholar 

  11. Tropel, P., Platet, N., Platel, J. C., Noël, D., Albrieux, M., Benabid, A. L., & Berger, F. (2006). Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells, 24, 2868–2876.

    CAS  PubMed  Google Scholar 

  12. Kicic, A., Shen, W. Y., Wilson, A. S., Constable, I. J., Robertson, T., & Rakoczy, P. E. (2003). Differentiation of marrow stromal cells into photoreceptors in the rat eye. Journal of Neuroscience, 23, 7742–7749.

    CAS  PubMed  Google Scholar 

  13. Nadri, S., Kazemi, B., Eeslaminejad, M. B., Yazdani, S., & Soleimani, M. (2013). High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Molecular Biology Reports, 40, 3883–3890.

    CAS  PubMed  Google Scholar 

  14. Yu, S., Tanabe, T., Dezawa, M., Ishikawa, H., & Yoshimura, N. (2006). Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochemical and Biophysical Research Communications, 344, 1071–1079.

    CAS  PubMed  Google Scholar 

  15. Mead, B., Hill, L. J., Blanch, R. J., et al. (2016). Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy, 18, 487–496.

    CAS  PubMed  Google Scholar 

  16. Langmann, T. (2007). Microglia activation in retinal degeneration. Journal of Leukocyte Biology, 81, 1345–1351.

    CAS  PubMed  Google Scholar 

  17. Davies, M. H., Eubanks, J. P., & Powers, M. R. (2006). Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Molecular Vision, 12, 467–477.

    CAS  PubMed  Google Scholar 

  18. Feng, S., Yu, H., Yu, Y., Geng, Y., Li, D., Yang, C., Lv, Q., Lu, L., Liu, T., Li, G., & Yuan, L. (2018). Levels of inflammatory cytokines lL-1β, IL-6, IL-8, IL-17A and TNF-α in aqueous humour of patients with diabetic retinopathy. Journal Diabetes Research, 2018, 1–6. https://doi.org/10.1155/2018/8546423.

    Article  CAS  Google Scholar 

  19. Tsai, T., Kuehn, S., Tsiampalis, N., Vu, M. K., Kakkassery, V., Stute, G., Dick, H. B., & Joachim, S. C. (2018). Anti-inflammatory cytokine and angiogenic factors level in vitreous samples of diabetic retinopathy patients. PLoS One, 13, e0194603. https://doi.org/10.1371/journal.pone.0194603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Y., & Wang, W. (2010). Effects of bone marrow mesenchymal stem cell transplantation on light-damaged retina. Investigative Ophthalmology & Visual Science, 51, 3742–3748.

    Google Scholar 

  21. Da Cunha, A. P., Zhang, Q., Prentiss, M., et al. (2018). The hierarchy of proinflammatory cytokines in ocular inflammation. Current Eye Research, 43, 553–565.

    PubMed  Google Scholar 

  22. Mugisho, O. O., Rupenthal, I. D., Squirrell, D. M., Bould, S. J., Danesh-Meyer, H. V., Zhang, J., Green, C. R., & Acosta, M. L. (2018). Intravitreal pro-inflammatory cytokines in non-obese diabetic mice: modelling signs of diabetic retinopathy. PLoS One, 13. https://doi.org/10.1371/journal.pone.0202156.

    PubMed  PubMed Central  Google Scholar 

  23. Trosan, P., Javorkova, E., Zajicova, A., Hajkova, M., Hermankova, B., Kossl, J., Krulova, M., & Holan, V. (2016). The supportive role of insulin-like growth factor-I in the differentiation of murine mesenchymal stem cells into corneal-like cells. Stem Cells and Development, 25, 874–881.

    CAS  PubMed  Google Scholar 

  24. Hermankova, B., Kossl, J., Javorkova, E., Bohacova, P., Hajkova, M., Zajicova, A., Krulova, M., & Holan, V. (2017). The identification of interferon-γ as a key supportive factor for retinal differentiation of murine mesenchymal stem cells. Stem Cells and Development, 26, 1399–1408.

    CAS  PubMed  Google Scholar 

  25. Javorkova, E., Trosan, P., Zajicova, A., Krulova, M., Hajkova, M., & Holan, V. (2014). Modulation of the early inflammatory microenvironment in the alkali-burned eye by systemically administered interferon-γ-treated mesenchymal stromal cells. Stem Cells and Development, 23, 2490–2500.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Holan, V., Trosan, P., Cejka, C., Javorkova, E., Zajicova, A., Hermankova, B., Chudickova, M., & Cejkova, J. (2015). A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells of ocular surface reconstruction. Stem Cells Translational Medicine, 4, 1052–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Holan, V., & Javorkova, E. (2013). Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction. Stem Cell Reviews and Reports, 9, 609–619. https://doi.org/10.1007/s12015-013-9449-0.

    Article  CAS  Google Scholar 

  28. Muller, B. (2019). Organotypic culture of adult mouse retina. Methods in Molecular Biology, 1940, 181–191.

    CAS  PubMed  Google Scholar 

  29. Valdes, J., Trachsel-Moncho, L., Sahaboglu, A., et al. (2016). Organotypic retinal explant cultures as in vitro alternative for diabetic retinopathy studies. Alternatives to Animal Experimentation, 33, 459–464.

    PubMed  Google Scholar 

  30. Klaassen, I., Van Noorden, C. J., & Schlingemann, R. O. (2013). Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Progress in Retinal and Eye Research, 34, 19–48.

    CAS  PubMed  Google Scholar 

  31. Perez, V. L., & Caspi, R. R. (2015). Immune mechanisms in inflammatory and degenerative eye disease. Trends in Immunology, 36, 354–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, C., Zhang, J., Ao, M., Li, Y., Zhang, C., Xu, Y., Li, X., & Wang, W. (2012). Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype. Journal of Cellular Biochemistry, 113, 590–598.

    CAS  PubMed  Google Scholar 

  33. Mathew, B., Poston, J. N., Dreixler, J. C., Torres, L., Lopez, J., Zelkha, R., Balyasnikova, I., Lesniak, M. S., & Roth, S. (2017). Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats. Graefe's Archive for Clinical and Experimental Ophthalmology, 255, 1581–1592.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiang, L., Ross, B. X., Yao, J., Shanmugam, S., Andrews, C. A., Hansen, S., Besirli, C. G., Zacks, D. N., & Abcouwer, S. F. (2018). Vitreous cytokine expression and a murine model suggest a key role of microglia in the inflammatory response to retinal detachment. Investigative Ophthalmology & Visual Science, 59, 3767–3778.

    CAS  Google Scholar 

  35. Madeira, M. H., Boia, R., Santos, P. F., Ambrósio, A. F., & Santiago, A. R. (2015). Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators of Inflammation, 2015, 673090–673015. https://doi.org/10.1155/2015/673090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xi, H., Katschke, K. J., Jr., Li, Y., Truong, T., Lee, W. P., Diehl, L., Rangell, L., Tao, J., Arceo, R., Eastham-Anderson, J., Hackney, J. A., Iglesias, A., Cote-Sierra, J., Elstrott, J., Weimer, R. M., & van Lookeren Campagne, M. (2016). IL-33 amplifies an innate immune response in the degenerating retina. The Journal of Experimental Medicine, 213, 189–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta, N., Brown, K. E., & Milam, A. H. (2003). Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Experimental Eye Research, 76, 463–471.

    CAS  PubMed  Google Scholar 

  38. Jonas, J. B., Tao, Y., Neumaier, M., & Findeisen, P. (2010). Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration. The Archives of Ophthalmology, 128, 1281–1286.

    CAS  PubMed  Google Scholar 

  39. Khalfaoui, T., Lizard, G., & Ouertani-Meddeb, A. (2008). Adhesion molecules (ICAM-1 and VCAM-1) and diabetic retinopathy in type 2 diabetes. Journal of Molecular Histology, 39, 243–249.

    CAS  PubMed  Google Scholar 

  40. Cui, R., Rekasi, H., Hepner-Schefczyk, M., Fessmann, K., Petri, R. M., Bruderek, K., Brandau, S., Jäger, M., & Flohé, S. B. (2016). Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients. Stem Cell Research & Therapy, 7, 88–94.

    Google Scholar 

  41. Lee, D. K., & Song, S. U. (2018). Immunomodulatory mechanisms of mesenchymal stem cells and their therapeutic applications. Cellular Immunology, 326, 68–76. https://doi.org/10.1016/j.cellimm.2017.08.009.

    Article  CAS  PubMed  Google Scholar 

  42. English, K., Barry, F. P., Field-Corbett, C. P., & Mahon, B. P. (2007). IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunology Letters, 110, 91–100.

    CAS  PubMed  Google Scholar 

  43. Sugita, S., Usui, Y., Horie, S., Futagami, Y., Aburatani, H., Okazaki, T., Honjo, T., Takeuchi, M., & Mochizuki, M. (2009). T-cell suppression by programmed cell death 1 ligand 1 on retinal pigment epithelium during inflammatory conditions. Investigative Ophtalmology & Visual Science, 50, 2862–2870.

    Google Scholar 

  44. Yang, W., Li, H., Chen, P. W., Alizadeh, H., He, Y., Hogan, R. N., & Niederkorn, J. Y. (2009). PD-L1 expression on human ocular cells and its possible role in regulating immune-mediated ocular inflammation. Investigative Ophtalmology & Visual Science, 50, 273–280.

    Google Scholar 

  45. Cui, L., Yin, S., Liu, W., Li, N., Zhang, W., & Cao, Y. (2007). Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Engineering, 13, 1185–1195.

    CAS  PubMed  Google Scholar 

  46. Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., & Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103, 4619–4621.

    CAS  PubMed  Google Scholar 

  47. Le Blanc, K., & Davies, L. C. (2015). Mesenchymal stromal cells and the innate immune response. Immunology Letters, 168, 140–146.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Grant Agency of the Czech Republic no. 17-04800S, 18-04393S and 19-02290S, the projects from the Ministry of Education, Youth and Sports of the Czech Republic no. SVV 244-260435, NPU-I: LO1508 and NPU-I: LO1309 and project from the Grant Agency of the Charles University no. 1516218 and 1184119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Holan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable national and institutional guidelines for the care and use of animal were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution and was approved by the local Animal Ethics Committee of the Institute of Experimental Medicine.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermankova, B., Kossl, J., Bohacova, P. et al. The Immunomodulatory Potential of Mesenchymal Stem Cells in a Retinal Inflammatory Environment. Stem Cell Rev and Rep 15, 880–891 (2019). https://doi.org/10.1007/s12015-019-09908-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09908-0

Keywords

Navigation