Skip to main content
Log in

Electrical and Optical Properties of Plasma-Sprayed Yttria

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate electrical properties of Yttria which is known for its outstanding thermal and chemical stabilities. Y2O3 coatings deposited on carbon steel substrates were prepared using an atmospheric plasma-spray system. Three sets of samples were sprayed and characterized in order to determine their microstructural, electrical, and optical aspects of sensitivity to spray distance. All coatings contained only cubic Y2O3 phase and exhibited weak influence of spray distance variations on electrical properties. Relative permittivity values varied between 9.3 and 11.2 in the whole frequency range (50 Hz to 1 MHz) for all samples. Temperature dependence of electrical properties in the range of 20 °C to 120 °C showed good stability of measured values. Electrical resistivity was in the order of magnitude up to 10 × 1012 Ω m for all the samples. SEM observations, porosity, and reflectivity measurements brought an expanded view of microstructural changes at different spray distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Wang, J. Zhang, K. Ning, D. Luo, H. Yang, D. Yin, D. Tang, and L.B. Kong: J. Am. Ceram. Soc., 2016, vol. 99 (5), pp. 1671–1675.

    Article  CAS  Google Scholar 

  2. R.S. Razavi, M. Ahsanzadeh-Vadeqani, M. Barekat, M. Naderi, S.H. Hashemi, and A.K. Mishra: Ceram. Int., 2016, vol. 142, pp. 7819–7823.

    Article  Google Scholar 

  3. R. Ghasemin, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali: Ceram. Int., 2014, vol. 40, pp. 347–355.

    Article  Google Scholar 

  4. J.H. Kim, H. Song, K.H. Kim, and C.B. Lee: Surf. Interface Anal., 2015, vol. 47, pp. 301–307.

    Article  CAS  Google Scholar 

  5. H.K. Seok, E.Y. Choi, P.R. Cha, M.C. Son, and B.L. Choi: Surf. Coat. Technol., 2011, vol. 205, pp. 3341–3346.

    Article  CAS  Google Scholar 

  6. J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara, and K. Uematsu: J. Am. Ceram. Soc., 2007, vol. 90, pp. 2327–2332.

    Article  CAS  Google Scholar 

  7. J. Kitamura, Z. Tang, H. Mizuno, K. Sato, and A. Burgess: J. Therm. Spray. Technol, 2011, vol. 20, pp. 170–175.

    Article  CAS  Google Scholar 

  8. P. Mechnich and W. Braue: J. Europ. Ceram. Soc., 2013, vol. 33, pp. 2645–2653.

    Article  CAS  Google Scholar 

  9. J. Kotlan, R.C. Seshadri, S. Sampath, P. Ctibor, Z. Pala, and R. Musalek: Ceram. Int., 2015, vol. 41 (9), pp. 11169-11176.

    Article  CAS  Google Scholar 

  10. T.K. Lin, D.S. Wuu, S.Y. Huang, and W.K. Wang: Jpn. J. Appl. Phys., 2016, vol. 55, pp. 126201.

    Article  Google Scholar 

  11. M.K. Reddy, S.V. Manorama, and A. R. Reddy: Mat. Chem. and Phys., 2002, vol. 78, pp. 239–245.

    Article  Google Scholar 

  12. G. Mauer, R. Vassen, and D. Stöver: J. Thermal Spray Technol., 2007, vol. 16, pp. 414–424.

    Article  CAS  Google Scholar 

  13. J. Kotlan, R.C. Seshadri, S. Sampath, P. Ctibor: Ceramics International, 2016, vol. 42 (9), pp. 11010–11014.

    Article  CAS  Google Scholar 

  14. S. Sampath, and H. Herman (1996) J. Thermal Spray Technol., 5(4), 445–456.

    Article  CAS  Google Scholar 

  15. J. Kitamura, H. Mizuno, N. Kato and I. Aoki: Mat. Trans., 2006, vol. 47 (7), pp. 1677–1683.

    Article  CAS  Google Scholar 

  16. ECIA-EIA-198-1, Ceramic Dielectric Capacitors Classes I, II, III and IV Part I: characteristics and requirements.

  17. T. Tsutsumi: Jpn. J. Appl. Phys., 1970, vol. 9, pp. 735–739.

    Article  CAS  Google Scholar 

  18. H.B. Xiong, L.L. Zheng, L. Li, and A. Vaidya (2005) Int. J. Heat Mass Trans., 48, 5121–5133.

    Article  CAS  Google Scholar 

  19. J. Robertson: Eur. Phys. J. Appl. Phys., 2004, vol. 28, pp. 265–291.

    Article  CAS  Google Scholar 

  20. B. Arif: J. Materials and Electronic Devices, 2015, vol.1, pp. 28–32.

    Google Scholar 

  21. P. Ctibor, V. Štengl, and Z. Pala: J. Advanced Ceramics, 2013, 2(3), 218–226.

    Article  CAS  Google Scholar 

  22. J.X. Zheng, G. Ceder, T. Maxisch, W.K. Chim, and W.K. Choi: Physical Review B, 2006, vol. 73, 104101.

    Article  Google Scholar 

  23. K. Ramachandran, V. Selvarajan, P.V. Ananthapadmanabhan, and K.P. Sreekumar: Thin Solid Films, 1998, vol. 315, pp. 144–152.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Zdenek Pala for XRD analysis, Dr. Radek Musalek for SEM observations, and Mr. Rostislav Hribal for the help with electrical properties’ measurements. The authors also thank Prof. Sanjay Sampath for providing the spray facilities at the Center for Thermal Spray Research, Stony Brook, NY. The electrical tests were supported by the Czech Science Foundation under the Grant No. 14-36566G Multidisciplinary research center for advanced materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ctibor.

Additional information

Manuscript submitted August 22, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotlan, J., Seshadri, R.C. & Ctibor, P. Electrical and Optical Properties of Plasma-Sprayed Yttria. Metall Mater Trans A 50, 504–511 (2019). https://doi.org/10.1007/s11661-018-4994-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4994-4

Navigation