Skip to main content
Log in

The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial groups and their interactions on a simple plant community in a microcosm experiment. The experiment was performed with two grass species (Poa compressa, Festuca rubra) and two herb species (Centaurea jacea, Lotus corniculatus) which are characteristic of intermediate succession stages in post-mining sites. Three months before the start of the experiment, bacteria, saprophytic fungi, protists, and their combined treatments were inoculated into the soil. At the start of the experiment, half of the pots were inoculated with mycorrhiza. After 60 days, plants were harvested and shoot and root biomass and microbial respiration and biomass were assessed. Above- and belowground plant biomass was significantly lower in the treatments with mycorrhiza. The effect was significant for aboveground biomass of grasses, especially that of Poa compressa, and for grass/herb ratio but not for herbs. Microbial respiration was also lower with mycorrhiza. Among microbial community treatments, saprophytic fungi showed significant effects on plant growth. The results showed the importance of mycorrhizal fungi on plant biomass and its interaction with different plant species and microbial groups which would be useful when extrapolating these results to a natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38:1008–1014

    Article  CAS  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front Plant Sci 5:562

    PubMed  PubMed Central  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bernhard AE, Kelly JJ (2016) Linking ecosystem function to microbial diversity. Front Microbiol 7:1041

    PubMed  PubMed Central  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  PubMed  Google Scholar 

  • Bonkowski M, Roy J (2012) Decomposer community complexity affects plant competition in a model early successional grassland community. Soil Biol Biochem 46:41–48

    Article  CAS  Google Scholar 

  • Bonkowski M, Cheng W, Griffiths BS, Alphei J, Scheu S (2000a) Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36:135–147

    Article  Google Scholar 

  • Bonkowski M, Griffiths BS, Scrimgeour C (2000b) Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of rye-grass. Appl Soil Ecol 14:37–53

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson D (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Chung SH, Scully ED, Peiffer M, Geib SM, Rosa C, Hoover K, Felton GW (2017) Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep 7:39690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  CAS  PubMed  Google Scholar 

  • Degens BP, Sparling GP, Abbott LK (1994) The contribution from hyphae, roots and organic carbon constituents to the aggregation of a sandy loam under long-term clover-based and grass pastures. Eur J Soil Sci 45:459–468

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, Waele DD (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Article  Google Scholar 

  • Fernandez CW, Kennedy PG (2016) Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394

    Article  CAS  PubMed  Google Scholar 

  • Frew A, Powell JR, Allsopp PG, Sallam N, Johnson SN (2017) Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory. Plant Soil 419:423–433

    Article  CAS  Google Scholar 

  • Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balík V, Kalčík J, Řehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post-mining sites. Eur J Soil Biol 44:109–121

    Article  Google Scholar 

  • Frouz J, Livečková M, Albrechtová J, Chroňáková A, Cajthaml T, Pižl V, Háněl L, Starý J, Baldrián P, Lhotáková Z (2013) Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. For Ecol Manage 309:87–95

    Article  Google Scholar 

  • Frouz J, Toyota A, Mudrák O, Jílková V, Filipová A, Cajthaml T (2016) Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession. Soil Biol Biochem 99:75–84

    Article  CAS  Google Scholar 

  • Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133

    Article  CAS  PubMed  Google Scholar 

  • Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N Z J For Sci 5:35–41

    Google Scholar 

  • Gavito ME, Olsson PLA (2003) Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 45:181–187

    Article  CAS  PubMed  Google Scholar 

  • Grimoldi AA, Kavanov M, Lattanzi FA, Schäufele R, Schnyder H (2006) Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange. New Phytol 172: 544–553.

    Article  CAS  PubMed  Google Scholar 

  • Harantová L, Mudrák O, Kohout P, Elhottová D, Frouz J, Baldrian P (2017) Development of microbial community during primary succession in areas degraded by mining activities. Land Degrad Dev 28:2574–2584

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Herdler S, Kreuzer K, Scheu S, Bonkowski M (2008) Interactions between arbuscular mycorrhizal fungi (Glomus intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biol Biochem 40:660–668

    Article  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16

    Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Martin F, Cairney JWG, Anderson IC (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 194:614–625

    Article  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Doh S, Lee DS, Lee D, Jin VL, Kimball JS (2003) Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob Change Biol 9:1427–1437

    Article  Google Scholar 

  • Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plantesoil feedback controls succession. Ecol Lett 9:1080–1088

    Article  PubMed  Google Scholar 

  • Kardol P, Cornips NJ, van Kempen ML, Bakx-Shotman JM, van der Putten WH (2007) Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecol Monogr 77:147–162

    Article  Google Scholar 

  • Klironomos J (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M (2013) Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol 199:203–211

    Article  CAS  PubMed  Google Scholar 

  • Koller R, Scheu S, Bonkowski M, Robin C (2013) Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biol Biochem 65:204–210

    Article  CAS  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Levy MA, Cumming JR (2014) Development of soils and communities of plants and arbuscular mycorrhizal fungi on West Virginia surface mines. Environ Manage 54:1153–1162

    Article  PubMed  Google Scholar 

  • Lin G, McCormack ML, Guo D (2015) Arbuscular mycorrhizal fungal effects on plant competition and community structure. J Ecol 103:1224–1232

    Article  CAS  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • McNamara NP, Griffiths RI, Tabouret A, Beresford NA, Bailey MJ, Whiteley AS (2007) The sensitivity of a forest soil microbial community to acute gamma-irradiation. Appl Soil Ecol 37:1–9

    Article  Google Scholar 

  • Mellado-Vázquez PG, Lange M, Bachmann D, Gockele A, Karlowsky S, Milcu A, Piel C, Roscher C, Roy J, Gleixner G (2016) Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biol Biochem 94:122–132

    Article  CAS  Google Scholar 

  • Morgan JB, Connolly EL (2013) Plant-soil interactions: nutrient uptake. Nat Educ Knowl 4:2

    Google Scholar 

  • Nara K (2006) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198

    Article  PubMed  Google Scholar 

  • Page FC (1976) An illustrated key to freshwater and soil amoebae. Freshwater Biological Association, Ambleside, UK, p 155

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Püschel D, Rydlová J, Vosátka M (2007) Mycorrhiza influences plant community structure in succession on spoil banks. Basic Appl Ecol 8:510–520

    Article  Google Scholar 

  • Rønn R, Gavito M, Jakobsen I, Frederiksen H, Christensen S (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem 34:923–932

    Article  Google Scholar 

  • Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684

    Article  CAS  PubMed  Google Scholar 

  • Ryan MH, Tibbett M, Edmonds-Tibbett T, Suriyagoda LDB, Lambers H, Cawthray GR, Pang J (2012) Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant Cell Environ 35:2170–2180

    Article  CAS  PubMed  Google Scholar 

  • Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    Article  CAS  PubMed  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1:77–91

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London, p 800

    Google Scholar 

  • Smith JL, Papendick RI, Bezdicek DF, Lynch JM (1993) Soil organic matter dynamics and crop residue management. In: Metting FB (ed) Soil microbial ecology. Marcel Dekker Inc, New York, pp 65–94

    Google Scholar 

  • Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM (2011) Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409:1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparling GP, West AW (1988) Modifications to the fumigation-extraction technique to permit simultaneous extraction and estimation of soil microbial C and N. Commun Soil Sci Plant Anal 19:327–344

    Article  CAS  Google Scholar 

  • St. John, TV, Coleman DC, Reid CPP (1983) Association of vesicular arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64:957–959

    Article  Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

    Article  PubMed  Google Scholar 

  • Thorn RG, Reddy CA, Harris D, Paul EA (1996) Isolation of saprotrophic basidiomycetes from soil. Appl Environ Microbiol 62:4288–4292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tobar R, Azcon R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhizal under water stressed conditions. New Phytol 126:119–122

    Article  Google Scholar 

  • Vályi K, Rillig MC, Hempel S (2015) Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytol 205:1577–1586

    Article  PubMed  Google Scholar 

  • Van der Heijden MGA, Bollerr T, Wiemken A (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Van der Heijden MGA, Bakker R, Verwaal J, Scheublin TR, Rutten M, van Logtestijn R, Staehelin C (2006a) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187

    Article  CAS  PubMed  Google Scholar 

  • Van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006b) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • Wagg C, Jansa J, Schmid B, van der Heijden MGA (2011a) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009

    Article  PubMed  Google Scholar 

  • Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011b) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92:1303–1313

    Article  PubMed  Google Scholar 

  • Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I, Müller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1351–1359

    Article  CAS  Google Scholar 

  • Wang F (2017) Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Crit Rev Environ Sci Technol 47:1901–1957

    Article  Google Scholar 

  • Weremijewicz J, Janos DP (2013) Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. New Phytol 198:203–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Czech Academy of Sciences (Grant No. L200961602) and the Ministry of Education, Youth and Sports of the Czech Republic-MEYS (Projects LM2015075, EF16_013/0001782). This work has also been supported by Charles University Research Centre program No. 204069. We thank the reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud M. Ardestani.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Katinka Ruthrof.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardestani, M.M., Jílková, V., Bonkowski, M. et al. The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil. Plant Ecol 220, 789–800 (2019). https://doi.org/10.1007/s11258-019-00953-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-019-00953-w

Keywords

Navigation