Skip to main content

Advertisement

Log in

Abatement of Tetrafluormethane Using Thermal Steam Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Perfluorinated compounds (PFCs) increasingly utilized in electronic manufacturing represent a potent source of global warming effect. Because of extremely high stability of PFCs only very high temperature is effective for their destruction. Thermal plasma offers higher destruction and removal efficiency as compared to conventional methods allowing to reach sufficiently high temperature as well as suitable conditions, including high enthalpy and reactive environment for destruction even of the most persistent PFCs. The aim pursued by this work is to apply water and gas stabilized DC-plasma torch for generating steam plasma for efficient abatement of the most persistent PFC, i.e., CF4, and to observe a dependence of destruction and removal efficiency on operational conditions, including concentration of CF4, input arc power of the plasma torch and an influence of an additional gas. The experiments were carried out at 20 kW and 40 kW of torch power in the concentration range 1–20% of CF4 in mixture with both nitrogen and argon and total feed rate 50 L/min in plasma chemical reactor. The mixture with argon exhibit considerably higher destruction efficiency than that with nitrogen. The highest destruction efficiency was attained in the mixture CF4/argon at 40 kW of torch power. Among other gases (CO2, O2, H2) added to CF4 the only hydrogen exhibited a positive effect to destruction performance. It was found an optimal feed rate of additional hydrogen corresponding to the maximum of destruction efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Available at IPCC Fourth Assesment Report: Climate Change (2007) Direct global warming potentials. https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html. Accessed 17 Jun 2019

  2. O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to C-F bond. Chem Soc Rev 37:308–319

    Article  Google Scholar 

  3. Abe H, Yoenda M, Fujiwara N (2008) Developments of plasma etching technology for fabricating semiconductor devices. Jpn J Appl Phys 47:1435–1455

    Article  CAS  Google Scholar 

  4. Seeley A, Chandler P, Cotte S, Mawle P (2000) Effective PFC gas abatement in a production environment semiconductor. 10th ed Fabtech

  5. Worton DR, Schwander J, Sturges WT et al (2007) Atmospheric trends and radiative forcings of CF4 and C2F6 inferred from firn air. Environ Sci Technol 41:2184–2189

    Article  CAS  Google Scholar 

  6. Gibbs MJ, Bakshi V, Lawson K, Pape D, Dolin EJ (2002) PFC emissions from primary aluminium production. IPCC. https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/3_3_PFC_Primary_Aluminium_Production.pdf. Accessed 8 Nov 2019

  7. Non-HCFC refrigerant mixture for an ultra-low temperature refrigeration system. US Patent. 6631625B1

  8. Kyoto protocol homepage. http://www.kyotoprotocol.com/. Accessed 18 Jun 2019

  9. The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement. Accessed 18 Jun 2019

  10. Regulation (EU) No 517/2014 of the European parliament and of the Council (2014) Official Journal of the European Union L 150/195–L 150/230

  11. https://ec.europa.eu/clima/news/eu-ratifies-kigali-amendment-montreal-protocol_en. Accessed 18 Jun 2019

  12. Reduction of Perfluorocompound (PFC) Emissions: 2005 State-of-the-Technology (2005) Report Technology Transfer #05104693A-ENG International SEMATECH Manufacturing Initiative

  13. ODS destruction (2009) ICF International for U.S. EPA’s Stratospheric Protection Division

  14. Kawai Y, Ikegami H, Sato N, et al. (eds) (2010) Industrial plasma technology. Wiley, Hoboken, chap.6, pp 69–77

    Google Scholar 

  15. Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001

    Article  Google Scholar 

  16. Hrabovský M (1998) Water-stabilized plasma generators. Pure Appl Chem 70:1157–1162

    Article  Google Scholar 

  17. Hrabovský M, Kopecký V, Sember V, Kavka T, Chumak O, Konrád M (2006) Properties of hybrid water-gas DC arc plasma torch. IEEE Trans Plasma Sci 34:1566–1575

    Article  Google Scholar 

  18. Hrabovský M (2011) Steam plasma flows generated in gerdien arc: environment for energy gas production from organics and for surface coatings. J Fluid Sci Technol 6:792–801

    Article  Google Scholar 

  19. Deam RT, Dayal AR, McAllister T et al (1995) Interconversion of chlorofluorocarbons in plasmas. J Chem Soc Chem Commun 3:347–348

    Article  Google Scholar 

  20. Murphy AB, Farmer AJD, Horrigan EC, McAllister T (2002) Plasma destruction of ozone depleting substances. Plasma Chem Plasma Process 22:371–375

    Article  CAS  Google Scholar 

  21. Narengerile Saito H, Watanabe T (2010) Decomposition mechanism of fluorinated compounds in water plasmas generated under atmospheric pressure. Plasma Chem Plasma Process 30:813–829

    Article  CAS  Google Scholar 

  22. Chen SH, Živný O, Mašláni A, Chau SW (2019) Abatement of fluorinated compounds in thermal plasma flow. J Fluorine Chem 217:41–49

    Article  CAS  Google Scholar 

  23. Pyrogenesis (2019) https://www.pyrogenesis.com/products-services/plasma-waste-processes/sparc/. Accessed 19 Jun 2019

  24. Lee HM, Chen SH (2017) Thermal abatement of perfluorocompounds with plasma torches. Energy Proc 142:3637–3643

    Article  Google Scholar 

  25. Hlína M, Hrabovský M, Kavka T, Konrád M (2014) Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Manag 34:63–66

    Article  Google Scholar 

  26. Hrabovský M, Hlína M, Kopecký V et al (2017) Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem Plasma Process 37:739–762

    Article  Google Scholar 

  27. Hrabovský M, Hlína M, Kopecký V et al (2018) Steam plasma methane reforming for hydrogen production. Plasma Chem Plasma Process 38:743–758

    Article  Google Scholar 

  28. Sember V, Mašláni A (2009) A simple spectroscopic method for determining temperature in a H2O–Ar plasma jet. High Temp Material Process – US 13:217–228

  29. Mašláni A, Sember V, Hrabovský M (2017) Spectroscopic determination of temperatures in plasmas generated by arc torches. Spectrochim Acta B 133:14–20

    Article  Google Scholar 

  30. Sember V, Mašláni A, Křenek P et al (2011) Spectroscopic charactrerization of a steam arc cutting torch. Plasma Chem Plasma Process 31:755–770

    Article  CAS  Google Scholar 

  31. Pub Chem (2019) https://pubchem.ncbi.nlm.nih.gov/compound/Carbon-tetrafluoride. Accessed 19 Sep 2019

  32. Graziano G (2008) On the superhydrophobicity of tetrafluoromethane. Chem Phys Lett 460:470–473

    Article  CAS  Google Scholar 

  33. Zuckerman JJ, Hagen AP (Eds.) (2009) Inorganic reactions and methods, vol 1. The formation of bonds to hydrogen (Part 1), WCH Publishers Inc

  34. Coufal O, Sezemský P, Živný O (2005) Database system of thermodynamic properties of individual substances at high temperatures. J Phys D Appl Phys 38:1265–1274

    Article  CAS  Google Scholar 

  35. CRC Handbook of Chemistry and Physics (2010) 91st ed., Taylor and Francis part 9, p 67

  36. Holland DMP, Potts AW, Trofimov AB et al (2005) An experimental and theoretical study of the valence shell photoelectron spectrum of tetrafluoromethane. Chem Phys 308:43–57

    Article  CAS  Google Scholar 

  37. Watanabe N, Suzuki D, Takahashi M (2011) Experimental and theoretical study on generalized oscillator strengths of the valence-shell electronic excitations in CF4. J Chem Phys 134:064307

    Article  Google Scholar 

  38. Christophorou LG, Olthoff JK (2004) Fundamental electron interactions with plasma processing gases. Springer, New York

    Book  Google Scholar 

  39. Wiberg N (ed) (2001) Inorganic chemistry. Academic Press, San Diego, pp 526–527

    Google Scholar 

  40. Barker JR, Steiner AL, Wallington TL (eds) (2016) Advances in atmospheric chemistry, vol 1. World Scientific, Singapore, pp 347–349

    Google Scholar 

  41. Berry RJ, Ehlers CJ, Burgess DR Jr, Zachariah MR, Marshall P (1997) A computational study of the reactions of atomic hydrogen with fluoromethanes: kinetics and product channels. Chem Phys Lett 269:107–116

    Article  CAS  Google Scholar 

  42. NIST Chemical kinetics database (2019) https://kinetics.nist.gov. Accessed 27 Jun 2019

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (GA CR) under Project No. GC17-10246 J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Živný.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Živný, O., Hlína, M., Serov, A. et al. Abatement of Tetrafluormethane Using Thermal Steam Plasma. Plasma Chem Plasma Process 40, 309–323 (2020). https://doi.org/10.1007/s11090-019-10047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10047-0

Keywords

Navigation