Skip to main content

Advertisement

Log in

Steam Plasma Methane Reforming for Hydrogen Production

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Reactions of methane with water and CO2 in thermal plasma generated in a special plasma torch with a water-stabilized arc were investigated. Steam plasma with very high enthalpy and low mass flow rate was produced in a dc arc discharge which was in direct contact with water vortex surrounding the arc column. Composition of produced gas, energy balance of the process and its efficiency were determined from measured data. The output H2/CO ratio could be adjusted by a choice of feed rates of input reactants in the range 1.1–3.4. Depending on experimental conditions the conversion of methane was up to 99.5%, the selectivity of H2 was up to 99.9%, and minimum energy needed for production of 1 mol of hydrogen was 158 kJ/mol. Effect of conditions on process characteristics was studied. Comparison of measured data with results of theoretical computations confirmed that the reforming process produces gas with composition which is close to the one obtained from the thermodynamic equilibrium calculations. Relations between process enthalpy, composition of produced syngas and process characteristics were determined both theoretically and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  CAS  Google Scholar 

  2. Lubitz W, Tumas B (2007) Hydrogen: an overview. Chem Rev 107:3900–3903

    Article  CAS  PubMed  Google Scholar 

  3. Oyama ST, Hacarlioglu P, Gu Y, Lee D (2012) Dry reforming of methane has no future for hydrogen production: comparison with steam reforming at high pressure in standard and membrane reactors. Int J Hydrogen Energy 37:10444–10450

    Article  CAS  Google Scholar 

  4. Ryi S, Park J, Kim D, Kim T, Kim S (2009) Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production. J Membr Sci 339:189–194

    Article  CAS  Google Scholar 

  5. Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL (2001) Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol 71:139–148

    Article  CAS  Google Scholar 

  6. Petitpas G, Rolliera JD, Darmonb A, Gonzalez-Aguilara J, Metkemeijera R, Fulcheri L (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy 32:2848–2867

    Article  CAS  Google Scholar 

  7. Zou JJ, Zhang YP, Liu CJ, Li Y, Eliasson B (2003) Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharge. Plasma Chem Plasma Process 23:69–82

    Article  CAS  Google Scholar 

  8. Song HK, Lee H, Choi JW, Na BK (2004) Effect of electrical pulse forms on the CO2 reforming of methane using atmospheric dielectric barrier discharge. Plasma Chem Plasma Process 24:57–72

    Article  Google Scholar 

  9. Zhang YP, Li Y, Wang Y, Liu CJ, Eliasson B (2003) Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges. Fuel Process Technol 83:101–109

    Article  CAS  Google Scholar 

  10. Christophe DB, Tom M, Jan VD, Sabine P, Bert V, Steven C, Annemie B (2011) Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations. Plasma Sources Sci Technol 20:1–11

    Google Scholar 

  11. Dai B, Zhang XL, Gong WM, He R (2000) Study on the methane coupling under pulse corona plasma by using CO2 as oxidant. Plasma Sci Technol 2:577–580

    Article  CAS  Google Scholar 

  12. Li MW, Xu GH, Tian YL, Chen L, Fu HF (2004) Carbon dioxide reforming of methane using DC corona discharge plasma reaction. J Phys Chem A 108:1687–1693

    Article  CAS  Google Scholar 

  13. Chen Q, Dai W, Tao XM et al (2006) CO2 reforming of CH4 in abnormal glow plasma under atmospheric pressure. Plasma Sci Technol 8:5–7

    Article  Google Scholar 

  14. Kalra CS, Gutsol AF, Fridman AA (2005) Gliding arc discharge as a source of intermediate plasma for methane partial oxidation. IEEE Trans Plasma Sci 33:32–34

    Article  CAS  Google Scholar 

  15. Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39:9658–9669

    Article  CAS  Google Scholar 

  16. Xu GF, Ding XW (2012) Optimization geometries of a vortex gliding-arc reactor for partial oxidation of methane. Energy 47:337–339

    Google Scholar 

  17. Morgan NN, ElSabbagh M (2017) Hydrogen production from methane through pulsed DC plasma. Plasma Chem Plasma Process 37:1375–1392

    Article  CAS  Google Scholar 

  18. Wang YF, Tsai CH, Chang WY, Kuo YM (2010) Methane steam reforming for producing hydrogen in an atmospheric pressure microwave plasma reactor. Int J Hydrogen Energy 35:135–140

    Article  CAS  Google Scholar 

  19. Jasinski M, Dors M, Nowakowska H, Nichipor GV, Mizeraczyk J (2011) Production of hydrogen via conversion of hydrocarbons using a microwave plasma. J Phys D Appl Phys 44(194002):7

    Google Scholar 

  20. Choi Dae Hyun, Chun Se Min, Maa Suk Hwal, Hong Yong Cheol (2016) Production of hydrogen-rich syngas from methane reforming by steam microwave plasma. J Ind Eng Chem 34:286–291

    Article  CAS  Google Scholar 

  21. Sekiguchi H, Mori Y (2003) Steam plasma reforming using microwave discharge. Thin Solid Films 435:44–48

    Article  CAS  Google Scholar 

  22. Tianyang Li T, Rehmet Ch, Cheng Y, Jin Y, Cheng Y (2017) Experimental comparison of methane pyrolysis in thermal plasma. Plasma Chem Plasma Process 37:1033–1049

    Article  CAS  Google Scholar 

  23. Rutberg PG, Kuznetsov VA, Popov VE, Popov SD, Surov AV, Subbotin DI, Bratsev AN (2015) Conversion of methane by CO2 + H2O + CH4 plasma. Appl Energy 148:159–168

    Article  CAS  Google Scholar 

  24. Ni G, Lan Y, Cheng C, Meng Y, Wang X (2011) Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure. Int J Hydrogen Energy 36:12869–12876

    Article  CAS  Google Scholar 

  25. Tao X, Bai M, Wu Q, Huang Z, Yin Y, Dai X (2009) CO2 reforming of CH4 by bianode thermal plasma. Int J Hydrogen Energy 34:9373–9378

    Article  CAS  Google Scholar 

  26. Tao X, Qi F, Yin Y, Dai X (2008) CO2 reforming of CH4 by combination of thermal plasma and catalyst. Int J Hydrogen Energy 33:1262–1265

    Article  CAS  Google Scholar 

  27. Chase MW Jr (ed) (1998) NIST-JANAF thermochemical tables, 4th edn. American Chemical Society and American Institute of Physics, New York

    Google Scholar 

  28. Hrabovsky M, Hlina M, Konrad M, Kopecky V, Chumak O, Kavka T, Maslani A (2009) Thermal plasma gasification of biomass for fuel gas production. High Temp Mater Process 13:299–313

    Article  CAS  Google Scholar 

  29. Hrabovsky M, Hlina M, Kopecky V, Maslani A, Zivny O, Krenek P, Serov A, Hurba O (2017) Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem Plasma Process 37:739–762

    Article  CAS  Google Scholar 

  30. Agon N, Hrabovsky M, Chumak O, Hlina M, Kopecky V, Maslani A, Bosmans A, Helsen L, Skoblja S, Van Oost G, Vierendeels J (2016) Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents. Waste Manag 47:246–255

    Article  CAS  PubMed  Google Scholar 

  31. Hrabovsky M, Kopecky V, Sember V, Kavka T, Chumak O, Konrad M (2006) Properties of hybrid water/gas DC arc plasma torch. IEEE Trans Plasma Sci 34:1566–1575

    Article  Google Scholar 

  32. Hrabovsky M (2002) Generation of thermal plasmas in liquid and hybrid DC arc torches. Pure Appl Chem 74:429–433

    Article  CAS  Google Scholar 

  33. U.S. Department of Energy (DOE) https://www.hydrogen.energy.gov/index.html

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Grant Agency of the Czech Republic under the project GA15-19444S and 17-10246J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hrabovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrabovsky, M., Hlina, M., Kopecky, V. et al. Steam Plasma Methane Reforming for Hydrogen Production. Plasma Chem Plasma Process 38, 743–758 (2018). https://doi.org/10.1007/s11090-018-9891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9891-5

Keywords

Navigation