Skip to main content
Log in

The African froghopper Ptyelus flavescens (suborder: Cicadomorpha) contains two novel and one known peptides of the adipokinetic hormone (AKH) family: structure, function and comparison with aphid AKH (suborder: Sternorrhyncha)

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The rationale of “green pesticides” in food security is to use information about endogenous hormones of pest insects to make peptide mimetics that will act against the pest insects to alter their behaviour or physiology, while taking care not to harm beneficial insects or other organisms in the food chain. Such “green” insecticides are designed thus, on the basis of neuropeptide ligand–receptor interaction and it is of paramount interest to have finally a mimetic at hand that is harmful only to pest insects. For this concept to work, one has to identify the ligands in pest and beneficial insects. In this study we investigate adipokinetic hormones (AKHs) from a hemipteran source. The most harmful hemipterans on an economic scale are aphids (Hemiptera: Sternorrhyncha: Aphidoidea) of which the AKH is known. Here we identify the AKH complement of a member of a related suborder, the raintree bug or froghopper Ptyelus flavescens (Hemiptera: Cicadomorpha: Cercopoidea). Identification and sequence elucidation of the adipokinetic peptides of this species was achieved by a heterospecific and conspecific trehalose-mobilizing bioassay, and by liquid chromatography coupled to positive electrospray mass spectrometry (LC–ESI–MS) including tandem MS2 spectra obtained by collision-induced dissociation. High resolution MS was employed to distinguish between Gln and Lys residues in the peptides. Three AKHs are discovered in the raintree bug: an octapeptide (Peram-CAH-I: pEVNFSPNW amide) previously known from cockroaches, and two novel decapeptides (Ptyfl-AKH-I: pEINFSTGWGQ amide and Ptyfl-AKH-II: pEINFSTAWGQ amide). The novel peptides were synthesized and the sequence assignments were unequivocally confirmed by co-elution of synthetic peptides and the natural equivalent and by identical MS data of the two forms. A conspecific bioassay in the froghopper describe the endogenous peptide Ptyfl-AKH-I as hypertrehalosemic. In heterologous bioassays the two novel AKHs induce an increase of circulating carbohydrates in cockroaches: Ptyfl-AKH-I is much more active than Ptyfl-AKH-II. Moreover, if the Ile2 in Ptyfl-AKH-II is replaced with a Leu2 residue, biological activity is further diminished. The current data show that the raintree AKH decapeptides differ by four amino acids from the aphid AKH (Acypi-AKH: pEVNFTPTWGQ amide). Therefore, it may be permissible to use the aphid AKH ligand–receptor pair to develop a “green” insecticide to target aphid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altstein M, Nässel DR (2010) Neuropeptide signalling in insects. In: Geary TG, Maule AG (eds) Neuropeptide systems as targets for parasite and pest control (Chapter 8). Landes Bioscience and Springer Science+Business Media, Austin and Berlin

    Google Scholar 

  • Audsley N, Down RE (2015) G protein coupled receptors as targets for next generation pesticides. Insect Biochem Mol Biol 67:27–37

    Article  CAS  PubMed  Google Scholar 

  • Caers J, Peeters L, Janssen T et al (2012) Structure-activity studies of Drosophila adipokinetic hormone (AKH) by a cellular expression system of dipteran AKH receptors. Gen Comp Endocrinol 177:332–337

    Article  CAS  PubMed  Google Scholar 

  • Chipman AD, Ferrier DEK, Brena C et al (2014) The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 12:e1002005

    Article  PubMed  PubMed Central  Google Scholar 

  • Derst C, Dircksen H, Meusemann K et al (2016) Evolution of neuropeptides in non-pterygote hexapods. BMC Evol Biol 16:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Forero D (2008) The systematics of the Hemiptera. Rev Colombiana Entomol 34:1–21

    Google Scholar 

  • Gäde G (1980) Further characteristics of adipokinetic and hyperglycaemic factor(s) of stick insects. J Insect Physiol 26:351–360

    Article  Google Scholar 

  • Gäde G (1992) The hormonal integration of insect flight metabolism. Zool Jb Physiol 96:211–225

    Google Scholar 

  • Gäde G (2004) Regulation of intermediary metabolism and water balance of insects by neuropeptides. Ann Rev Entomol 49:93–113

    Article  Google Scholar 

  • Gäde G (2009) Peptides of the adipokinetic hormone/red pigment-concentrating hormone family. A new take on biodiversity. Ann NY Acad Sci 1163:125–136

    Article  PubMed  Google Scholar 

  • Gäde G, Goldsworthy GJ (2003) Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Manag Sci 59:1063–1075

    Article  PubMed  Google Scholar 

  • Gäde G, Janssens MP-E (1994) Cicadas contain novel members of the AKH/RPCH family peptides with hypertrehalosaemic activity. Biol Chem Hoppe Seyler 375:803–809

    Article  PubMed  Google Scholar 

  • Gäde G, Marco HG (2009) Peptides of the adipokinetic hormone/red pigment-concentrating hormone family with special emphasis on Caelifera: primary sequences and functional considerations contrasting grasshoppers and locusts. Gen Comp Endocrinol 162:59–68

    Article  PubMed  Google Scholar 

  • Gäde G, Marco HG (2013) AKH/RPCH peptides. In: Kastin AJ (ed) Handbook of biologically active peptides (Chapter 28). Elsevier, Amsterdam, pp 185–190

    Chapter  Google Scholar 

  • Gäde G, Marco HG (2017) The adipokinetic hormone of Mantodea in comparison to other Dictyoptera. Arch Insect Biochem Physiol 94:e21376

    Article  Google Scholar 

  • Gäde G, Goldsworthy GJ, Kegel G et al (1984) Single step purification of locust adipokinetic hormones I and II by reversed phase high-performance liquid chromatography and the amino-acid composition of the hormone II. Hoppe Seylers Z Physiol Chem 365:393–398

    Article  PubMed  Google Scholar 

  • Gäde G, Auerswald L, Šimek P et al (2003) Red pigment-concentrating hormone is not limited to crustaceans. Biochem Biophys Res Commun 309:972–978

    Article  Google Scholar 

  • Gäde G, Auerswald L, Predel R et al (2004) Substrate usage and its regulation during flight and swimming in the backswimmer, Notonecta glauca. Physiol Entomol 29:84–93

    Article  Google Scholar 

  • Gäde G, Šimek P, Marco HG (2007a) Water scorpions (Heteroptera, Nepidae) and giant water bugs (Heteroptera, Belostomatidae): sources of new members of the adipokinetic hormone/red pigment-concentrating hormone family. Peptides 28:1359–1367

    Article  PubMed  Google Scholar 

  • Gäde G, Šimek P, Marco HG (2007b) A novel adipokinetic peptide in a water boatman (Heteroptera, Corixidae) and its bioanalogue in a saucer bug (Heteroptera, Naucoridae). Peptides 28:594–601

    Article  PubMed  Google Scholar 

  • Gäde G, Šimek P, Marco HG (2015) Two novel tyrosine-containing peptides (Tyr4) of the adipokinetic hormone family in beetles of the families Coccinellidae and Silphidae. Amino Acids 47:2323–2333

    Article  PubMed  Google Scholar 

  • Gäde G, Šimek P, Marco HG (2016) Novel members of the adipokinetic hormone family in beetles of the superfamily Scarabaeoidea. Amino Acids 48:2785–2798

    Article  PubMed  Google Scholar 

  • Gullan PJ, Cranston PS (2014) The insects: an outline of entomology, 5th edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Hayes TK, Keeley LL, Knight DW (1986) Insect hypertrehalosaemic hormone: isolation and primary structure from Blaberus discoidalis cockroaches. Biochem Biophys Res Commun 140:674–678

    Article  CAS  PubMed  Google Scholar 

  • Holwerda DA, van Doorn J, Beenakkers AMT (1977) Characterization of the adipokinetic and hyperglycaemic substances from the locust corpus cardiacum. Insect Biochem 7:151–157

    Article  CAS  Google Scholar 

  • Jedlička P, Steinbauerová V, Šimek P et al (2012) Functional characterization of the adipokinetic hormone in the pea aphid, Acyrthosiphon pisum. Comp Biochem Physiol A Mol Integr Physiol 162:51–58

    Article  PubMed  Google Scholar 

  • Jedličková V, Jedlička P, Lee HJ (2015) Characterization and expression analysis of adipokinetic hormone and its receptor in eusocial aphid Pseudoregma bambucicola. Gen Comp Endocrinol 223:38–46

    Article  PubMed  Google Scholar 

  • Johnson JI, Kavanaugh SI, Nguyen C et al (2014) Localization and functional characterization of a novel adipokinetic hormone in the mollusc, Aplysia californica. PloS One 9:e106014

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodrík D, Marco HG, Šimek P et al (2010) The adipokinetic hormones of Heteroptera: a comparative study. Physiol Entomol 35:117–127

    Article  Google Scholar 

  • Li S, Hauser F, Skadborg SK et al (2016) Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa. Sci Rep 6:32789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz MW, Gäde G (2009) Hormonal regulation of energy metabolism in insects as a driving force for performance. Integr Comp Biol 49:380–392

    Article  CAS  PubMed  Google Scholar 

  • Lorenz MW, Kellner R, Völkl W et al (2001) A comparative study on hypertrehalosaemic hormones in the Hymenoptera: sequence determination, physiological actions and biological significance. J Insect Physiol 47:563–571

    Article  CAS  PubMed  Google Scholar 

  • Nygaard S, Zhang G, Schiøtt M et al (2011) The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res 21:1339–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spik G, Montreuil J (1964) Deux causes d‘erreur dans les dosages colorimetriques des oses neutres totaux. Bull Soc Chim Biol 46:739–749

    CAS  PubMed  Google Scholar 

  • The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313

    Article  PubMed Central  Google Scholar 

  • Veenstra JA, Rodriguez L, Weaver RJ (2012) Allatotropin, leucokinin and AKH in honey bees and other Hymenoptera. Peptides 35:122–130

    Article  CAS  PubMed  Google Scholar 

  • Verlinden H, Vleugels R, Zels S et al (2015) Receptors for neuronal or endocrine signalling molecules as potential targets for the control of insect pests. Adv Insect Physiol 46:167–303

    Article  Google Scholar 

  • Weaver RJ, Marco HG, Šimek P et al (2012) Adipokinetic hormones of sphingid Lepidoptera, including the identification of a second M. sexta AKH. Peptides 34:44–50

    Article  CAS  PubMed  Google Scholar 

  • Wenger JA, Cassone BJ, Legeai F et al (2017) Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochem Mol Biol. doi:10.1016/j.ibmb.2017.01.005

    PubMed  Google Scholar 

  • Xu G, Gu G-X, Teng Z-W et al (2016) Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis. Sci Rep 6:28976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zöllner N, Kirsch K (1962) Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin-Reaktion. Z Gesamte Exp Med 135:545–561

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant No 85768 [IFR13020116790 to GG] and Grant No. 10924 to HGM). The authors also thank the following organisations for financial support: the Research Council of the University of Cape Town (staff awards to GG and HGM) and the Czech Science Foundation (Project No. 17-22276S to PS). We thank P. Krusberska and M. Moos for help with the MS experiments, and Vic Le Roux for his help with collecting the raintree bugs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gäde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: M. S. Palma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 117 kb)

Supplementary material 2 (DOCX 939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gäde, G., Šimek, P. & Marco, H.G. The African froghopper Ptyelus flavescens (suborder: Cicadomorpha) contains two novel and one known peptides of the adipokinetic hormone (AKH) family: structure, function and comparison with aphid AKH (suborder: Sternorrhyncha). Amino Acids 49, 1679–1690 (2017). https://doi.org/10.1007/s00726-017-2461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2461-y

Keywords

Navigation