Skip to main content

Advertisement

Log in

PARV4 found in wild chimpanzee faeces: an alternate route of transmission?

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human parvovirus 4 (PARV4, family Parvoviridae, genus Tetraparvovirus) displays puzzling features, such as uncertain clinical importance/significance, unclear routes of transmission, and discontinuous geographical distribution. The origin, or the general reservoir, of human PARV4 infection is unknown. We aimed to detect and characterize PARV4 virus in faecal samples collected from two wild chimpanzee populations and 19 species of captive non-human primates. We aimed to investigate these species as a potential reservoir and alternate route of transmission on the African continent. From almost 500 samples screened, a single wild Pan troglodytes schweinfurthii sample tested positive. Full genome analysis, as well as single ORF phylogenies, confirmed species-specific PARV4 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Manning A, Willey SJ, Bell JE, Simmonds P (2007) Comparison of tissue distribution, persistence, and molecular epidemiology of parvovirus B19 and novel human parvoviruses PARV4 and human bocavirus. J Infect Dis 195:1345–1352. https://doi.org/10.1086/513280

    Article  CAS  PubMed  Google Scholar 

  2. Matthews PC, Sharp C, Simmonds P, Klenerman P (2017) Human parvovirus 4 ‘PARV4’ remains elusive despite a decade of study. F1000Research 6:82. https://doi.org/10.12688/f1000research.9828.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Asiyabi S, Nejati A, Shoja Z et al (2016) First report of human parvovirus 4 detection in Iran. J Med Virol 88:1314–1318. https://doi.org/10.1002/jmv.24485

    Article  CAS  PubMed  Google Scholar 

  4. Fryer JF, Delwart E, Hecht FM et al (2007) Frequent detection of the parvoviruses, PARV4 and PARV5, in plasma from blood donors and symptomatic individuals. Transfusion 47:1054–1061. https://doi.org/10.1111/j.1537-2995.2007.01235.x

    Article  CAS  PubMed  Google Scholar 

  5. Matthews PC, Malik A, Simmons R et al (2014) PARV4: an emerging tetraparvovirus. PLoS Pathog 10:e1004036. https://doi.org/10.1371/journal.ppat.1004036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prakash S, Jain A, Seth A et al (2015) Complete genome sequences of two isolates of human parvovirus 4 from patients with acute encephalitis syndrome. Genome Announc 3:e01472-14. https://doi.org/10.1128/genomeA.01472-14

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rosenfeldt V, Norja P, Lindberg E et al (2015) Low prevalence of parvovirus 4 in HIV-infected children in Denmark. Pediatr Infect Dis J 34:761–762. https://doi.org/10.1097/INF.0000000000000642

    Article  PubMed  Google Scholar 

  8. Servant-Delmas A, Laperche S, Lionnet F et al (2014) Human parvovirus 4 infection in low- and high-risk French individuals. Transfusion 54:744–745. https://doi.org/10.1111/trf.12512

    Article  PubMed  Google Scholar 

  9. Sharp CP, Lail A, Donfield S et al (2010) High frequencies of exposure to the novel human parvovirus, PARV4 in haemophiliacs and injecting drug users detected by a serological assay for PARV4 antibodies. J Infect Dis 200:1119–1125. https://doi.org/10.1086/605646.High

    Article  Google Scholar 

  10. Yu X, Zhang J, Hong L et al (2012) High prevalence of human parvovirus 4 infection in HBV and HCV infected individuals in Shanghai. PLoS One 7:e29474. https://doi.org/10.1371/journal.pone.0029474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simmons R, Sharp C, McClure CP et al (2012) Parvovirus 4 infection and clinical outcome in high-risk populations. J Infect Dis 205:1816–1820. https://doi.org/10.1093/infdis/jis291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen MY, Hung C-C, Lee K-L (2015) Detection of human parvovirus 4 viremia in the follow-up blood samples from seropositive individuals suggests the existence of persistent viral replication or reactivation of latent viral infection. Virol J 12:94. https://doi.org/10.1186/s12985-015-0326-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drexler JF, Reber U, Muth D et al (2012) Human parvovirus 4 in nasal and fecal specimens from children, Ghana. Emerg Infect Dis 18:1650–1653. https://doi.org/10.3201/eid1810.111373

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharp CP, Gregory WF, Hattingh L et al (2017) PARV4 prevalence, phylogeny, immunology and coinfection with HIV, HBV and HCV in a multicentre African cohort. Wellcome Open Res 2:26. https://doi.org/10.12688/wellcomeopenres.11135.1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharp CP, Vermeulen M, Nébié Y et al (2010) Changing epidemiology of human parvovirus 4 infection in sub-Saharan Africa. Emerg Infect Dis 16:1605–1607. https://doi.org/10.3201/eid1610.101001

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lavoie M, Sharp CP, Pépin J et al (2012) Human parvovirus 4 infection, Cameroon. Emerg Infect Dis 18:680–683. https://doi.org/10.3201/eid1804.110628

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sharp CP, LeBreton M, Kantola K et al (2010) Widespread infection with homologues of human parvoviruses B19, PARV4, and human bocavirus of chimpanzees and gorillas in the wild. J Virol 84:10289–10296. https://doi.org/10.1128/JVI.01304-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adlhoch C, Kaiser M, Loewa A et al (2012) Diversity of chimpanzees, and prey relationships. Emerg Infect Dis 18:859–862. https://doi.org/10.3201/eid1805.111849

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rudicell RS, Piel AK, Stewart F et al (2011) High prevalence of simian immunodeficiency virus infection in a community of savanna chimpanzees. J Virol 85:9918–9928. https://doi.org/10.1128/JVI.05475-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dadáková E, Brožová K, Piel AK et al (2018) Adenovirus infection in savanna chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania. Arch Virol 163:191–196. https://doi.org/10.1007/s00705-017-3576-x

    Article  CAS  PubMed  Google Scholar 

  21. Hernandez-Aguilar RA (2009) Chimpanzee nest distribution and site reuse in a dry habitat: implications for early hominin ranging. J Hum Evol 57:350–364. https://doi.org/10.1016/j.jhevol.2009.03.007

    Article  PubMed  Google Scholar 

  22. Mapua MI, Petrželková KJ, Burgunder J et al (2016) A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda). Malar J 15:423. https://doi.org/10.1186/s12936-016-1476-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Howard P (1991) Nature conservation in Uganda’s tropical forest reserves. IUCN, Gland

    Google Scholar 

  24. Hrazdilová K, Slaninková E, Brožová K et al (2016) New species of torque teno miniviruses infecting gorillas and chimpanzees. Virology 487:207–214. https://doi.org/10.1016/j.virol.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  25. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  27. Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minh BQ, Nguyen MA, Von Haeseler A et al (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195. https://doi.org/10.1093/molbev/mst024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  30. Simmonds P, Douglas J, Bestetti G et al (2008) A third genotype of the human parvovirus PARV4 in sub-Saharan Africa. J Gen Virol 89:2299–2302. https://doi.org/10.1099/vir.0.2008/001180-0

    Article  CAS  PubMed  Google Scholar 

  31. Longhi E, Bestetti G, Acquaviva V et al (2007) Human parvovirus 4 in the bone marrow of Italian patients with AIDS. AIDS 21:1481–1483. https://doi.org/10.1097/QAD.0b013e3281e38558

    Article  PubMed  Google Scholar 

  32. Panning M, Kobbe R, Vollbach S et al (2010) Novel human parvovirus 4 genotype 3 in infants, Ghana. Emerg Infect Dis 16:1143–1146. https://doi.org/10.3201/eid1607.100025

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Tanzanian Wildlife Research Institute (TAWIRI) and Tanzanian Commission for Science and Technology (COSTECH) for permission to conduct research in Tanzania. This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Program of Sustainability II, by project LO1218 with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the NPU I program, and further co-financed from the European Social Fund and the state budget of the Czech Republic (project OPVK CZ.1.07/2.3.00/20.0300). We acknowledge a grant for the development of research organization (RVO: RO0516). Support for GMERC (formerly UPP) and ongoing work at Issa comes from the UCSD/Salk Center for Academic Research and Training in Anthropogeny (CARTA).

Funding

All grants funding this study are listed in the Acknowledgments section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristýna Hrazdilová.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Sheela Ramamoorthy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brožová, K., Modrý, D., Dadáková, E. et al. PARV4 found in wild chimpanzee faeces: an alternate route of transmission?. Arch Virol 164, 573–578 (2019). https://doi.org/10.1007/s00705-018-4073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-4073-6

Navigation