Skip to main content
Log in

Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae)

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Termites have evolved diverse defence strategies to protect themselves against predators, including a complex alarm communication system based on vibroacoustic and/or chemical signals. In reaction to alarm signals, workers and other vulnerable castes flee away while soldiers, the specialized colony defenders, actively move toward the alarm source. In this study, we investigated the nature of alarm communication in the pest Reticulitermes flavipes. We found that workers and soldiers of R. flavipes respond to various danger stimuli using both vibroacoustic and chemical alarm signals. Among the danger stimuli, the blow of air triggered the strongest response, followed by crushed soldier head and light flash. The crushed soldier heads, which implied the alarm pheromone release, had the longest-lasting effect on the group behaviour, while the responses to other stimuli decreased quickly. We also found evidence of a positive feedback, as the release of alarm pheromones increased the vibratory communication among workers and soldiers. Our study demonstrates that alarm modalities are differentially expressed between castes, and that the response varies according to the nature of stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Austin JW, Szalanski AL, Scheffrahn RH, Messenger MT, Dronnet S, Bagnères A-G (2005) Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Ann Entomol Soc Am 98:395–401

    Article  CAS  Google Scholar 

  • Bagnères A-G, Clément JL, Blum MS, Severson RF, Joulie C, Lange C (1990) Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): polymorphism and chemotaxonomy. J Chem Ecol 16:3213–3244

    Article  PubMed  Google Scholar 

  • Billen J, Šobotník J (2015) Insect exocrine glands. Arthropod Struct Dev 44:399–400

    Article  PubMed  Google Scholar 

  • Chapman RF (1998) The insects—structure and function, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Connétable S, Robert A, Bouffault F, Bordereau C (1999) Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris (Termitidae, Macrotermitinae). J Insect Behav 12:329–342

    Article  Google Scholar 

  • Costa-Leonardo AM, Shields KS (1990) Morphology of the mandibular glands in workers of Constrictotermes cyphergaster soldiers (Termitidae, Nasutermitinae). Int J Insect Morphol Embryol 19:61–64

    Article  Google Scholar 

  • Cristaldo P, Jandák V, Kutalová K, Rodrigues VB, Brothánek M, Jiříček O, DeSouza O, Šobotník J (2015) The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae). Biol Open 4:1649–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delattre O, Sillam-Dussès D, Jandák V, Brothánek M, Rücker K, Bourguignon T, Vytisková B, Cvačka J, Jiříček O, Šobotník J (2015) Complex alarm strategy in the most basal termite species. Behav Ecol Sociobiol 69:1945–1955

    Article  Google Scholar 

  • Evans TA (2011) Invasive termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 519–562

    Google Scholar 

  • Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474

    Article  CAS  PubMed  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, New York

    Google Scholar 

  • Hager FA, Kirchner WH (2013) Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J Exp Biol 216:3249–3256

    Article  PubMed  Google Scholar 

  • Haverty M (1977) The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera). Sociobiology 2:199–216

    Google Scholar 

  • Hertel H, Hanspach A, Plarre R (2011) Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J Insect Behav 24:106–115

    Article  Google Scholar 

  • Hill PSM (2014) Stretching the paradigm or building a new? Development of a cohesive language for vibrational communication. In: Cocroft RB, Gogala M, Hill PSM et al (eds) Studying vibrational communication. Springer, Heidelberg, pp 13–30

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Howse PE (1962) The perception of vibration by the subgenual organ in Zootermopsis angusticollis Emerson and Periplaneta americana L. J Cell Mol Life Sci 18:457–458

    Article  Google Scholar 

  • Howse PE (1965a) The structure of the subgenual organ and certain other mechanoreceptors of the termite Zootermopsis angusticollis (Hagen). Proc R Entomol Soc A 40:137–146

    Google Scholar 

  • Howse PE (1965b) On the significance of certain oscillatory movements of termites. Insect Soc 12:335–346

    Article  Google Scholar 

  • Hunt JH, Richard F-J (2013) Intracolony vibroacoustic communication in social insects. Insect Soc 60:403–417

    Article  Google Scholar 

  • Kaib M (1990) Intra- and interspecific chemical signals in the termite Schedorhinotermes-production sites, chemistry, and behaviour. In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods. Birkhauser, Basel, pp 26–32

    Chapter  Google Scholar 

  • Kettler R, Leuthold RH (1995) Inter- and intraspecific alarm response in the termite Macrotermes subhyalinus (Rambur). Insect Soc 42:145–156

    Article  Google Scholar 

  • Kirchner WH, Broecker I, Tautz J (1994) Vibrational alarm communication in the damp-wood termite Zootermopsis nevadensis. Physiol Entomol 19:187–190

    Article  Google Scholar 

  • Kriston MI, Watson JAL, Eisner T (1977) Non-combative behaviour of large soldiers of Nasutitermes exitiosus (Hill): an analytical study. Insect Soc 24:103–111

    Article  Google Scholar 

  • Leonhardt SR, Menzel F, Nehring V, Schmitt T (2016) Ecology and evolution of communication in social insects. Cell 164:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Lubin YD, Montgomery GG (1981) Defenses of Nasutitermes termites (Isoptera, Termitidae) against Tamandua anteaters (Edenata, Myrmecophagidae). Biotropica 13:66–76

    Article  Google Scholar 

  • Parton AH, Howse PE, Baker R, Clément JL (1981) Variation in the chemistry of the frontal gland secretion of European Reticulitermes species. In: Howse PE, Clément JL (eds) Biosystematics of social insects. Academic Press, London, pp 193–209

    Google Scholar 

  • Pasteels JM, Bordereau C (1998) Releaser pheromones in termites. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects. Westview Press, Boulder, pp 193–215

    Google Scholar 

  • Perdereau E, Dedeine F, Christides JP, Bagnères A-G (2010) Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J Chem Ecol 36:1189–1198

    Article  CAS  PubMed  Google Scholar 

  • Perdereau E, Dedeine F, Christides JP, Dupont S, Bagnères A-G (2011) Competition between invasive and indigenous species: an insular case study of subterranean termites. Biol Invasions 13:1457–1470

    Article  Google Scholar 

  • Reinhard J, Clément JL (2002) Alarm reaction of European Reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J Insect Behav 15:95–107

    Article  Google Scholar 

  • Reinhard J, Quintana A, Sreng L, Clément JLA (2003) Chemical signals inducing attraction and alarm in European Reticulitermes termites (Isoptera, Rhinotermitidae). Sociobiology 42:675–691

    Google Scholar 

  • Röhrig A, Kirchner WH, Leuthold RH (1999) Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insectes Soc 46:71–77

    Article  Google Scholar 

  • Roisin Y, Everaerts C, Pasteels JM, Bonnard O (1990) Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone in Nasutitermes princeps. J Chem Ecol 16:2865–2875

    Article  CAS  PubMed  Google Scholar 

  • Seelinger G, Seelinger U (1983) On the social organization, alarm and fighting in the primitive cockroach Cryptocercus punctulatus Scudder. Z Tierpsychol 61:315–333

    Article  Google Scholar 

  • Smith J, Su N-Y, Escobar RN (2006) An areawide population management project for the invasive eastern subterranean termite (Isoptera: Rhinotermitidae) in a low-income community in Santiago, Chile. Am Entomol 52:253–260

    Article  Google Scholar 

  • Šobotník J, Hanus R, Kalinová B, Piskorski R, Cvačka J, Bourguignon T, Roisin Y (2008a) (E,E)-α-farnesene, the alarm pheromone of Prorhinotermes canalifrons (Isoptera: Rhinotermitidae). J Chem Ecol 34:478–486

    Article  CAS  PubMed  Google Scholar 

  • Šobotník J, Hanus R, Roisin Y (2008b) Agonistic behaviour of the termite Prorhinotermes canalifrons (Isoptera: Rhinotermitidae). J Insect Behav 21:521–534

    Article  Google Scholar 

  • Šobotník J, Jirošová A, Hanus R (2010) Chemical warfare in termites. J Insect Physiol 56:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Stuart AM (1963) Studies on the Communication of Alarm in the Termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol Zool 36:85–96

    Article  Google Scholar 

  • Stuart AM (1988) Preliminary studies on the significance of head-banging movements in termites with special reference to Zootermopsis angusticollis (Hagen) (Isoptera: Hodotermitidae). Sociobiology 14:49–60

    Google Scholar 

  • Su NY, Scheffrahn RH (2000) Termites as pests of buildings. In: Abe T, Bignell D, Higashi M (eds) Termites, evolution, sociality, symbioses, ecology. Kluwer Academic Publisher, Dordrecht, pp 437–453

    Chapter  Google Scholar 

  • Vauchot B, Provost E, Bagnères A-G, Riviere G, Roux M, Clément J-L (1998) Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species. Reticulitermes santonensis and R. lucifugus grassei, living in a mixed colony. J Insect Physiol 44:59–66

    Article  CAS  Google Scholar 

  • Vrkoč J, Křeček J, Hrdý I (1978) Monoterpenic alarm pheromones in two Nasutitermes species. Acta Entomol Bohemoslov 75:1–8

    Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the project IGA A30/17 of the Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, by the project CIGA 20184303 of the Czech University of Life Sciences Prague, and by the BQR 2014/2015 from the University Paris 13-SPC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Šobotník.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40_2018_682_MOESM1_ESM.tif

Fig. S1. Variation in speed-of-motion of workers (white bars) and soldiers (grey bars) in R. flavipes during a 6-minute period after the introduction of the stimulus in comparison to the respective controls. N=12 for each caste and stimulus. Box plots show the median and 25–75th percentiles. Whiskers show all data excluding outliers outside the 10th and 90th percentiles (circles). Statistical differences are shown for *P<0.05, **P<0.01 and ***P<0.001. Abbreviations: CO, control blank paper; CWH, crushed worker head sample; CSH, crushed soldier head sample (TIF 5332 KB)

40_2018_682_MOESM2_ESM.tif

Fig S2. Typical vibroacoustic responses of Reticulitermes flavipes termite groups obtained after the introduction of the stimulus (arrow). Abbreviations: CO, control blank paper; CWH, crushed worker head; CSH, crushed soldier head (TIF 12392 KB)

Video SV1. Survey of methods used to study vibroacoustic communication, and the basic modes of oscillatory movements performed by R. flavipes (MP4 5942 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delattre, O., Šobotník, J., Jandák, V. et al. Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae). Insect. Soc. 66, 265–272 (2019). https://doi.org/10.1007/s00040-018-00682-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-018-00682-9

Keywords

Navigation