Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access August 20, 2020

Joint numerical ranges: recent advances and applications minicourse by V. Müller and Yu. Tomilov

  • V. Müller EMAIL logo and Yu. Tomilov
From the journal Concrete Operators

Abstract

We present a survey of some recent results concerning joint numerical ranges of n-tuples of Hilbert space operators, accompanied with several new observations and remarks. Thereafter, numerical ranges techniques will be applied to various problems of operator theory. In particular, we discuss problems concerning orbits of operators, diagonals of operators and their tuples, and pinching problems. Lastly, motivated by known results on the numerical radius of a single operator, we examine whether, given bounded linear operators T1, . . ., Tn on a Hilbert space H, there exists a unit vector x ∈ H such that |Tjx, x| is “large” for all j = 1, . . . , n.

References

[1] J. Agler, Geometric and topological properties of the numerical range, Indiana Univ. Math. J., 1982, 31, 767–777.10.1512/iumj.1982.31.31053Search in Google Scholar

[2] J. Anderson, Derivations, commutators and the essential numerical range (PhD thesis), 1971, Indiana University.Search in Google Scholar

[3] J. Anderson, J. Stampfli, Commutators and compressions, Israel J. Math., 1971, 10, 433–441.10.1007/BF02771730Search in Google Scholar

[4] W. Arveson, A theorem on the action of abelian unitary groups, Pacific J. Math., 1966, 16, 205–212.10.2140/pjm.1966.16.205Search in Google Scholar

[5] W. Arveson, R.V. Kadison, Diagonals of self-adjoint operators, Operator Theory, Operator Algebras, and Applications, Contemp. Math., 2006, 414, AMS, Providence, RI, 247–263.10.1090/conm/414/07814Search in Google Scholar

[6] W. Arveson, Diagonals of normal operators with finite spectrum, Proc. Natl. Acad. Sci. USA, 2007, 104, 1152–1158.10.1073/pnas.0605367104Search in Google Scholar

[7] E. Asplund, V. Pták, A minimax inequality for operators and a related numerical range, Acta Math., 1971, 126, 53–62.10.1007/BF02392025Search in Google Scholar

[8] Y.-H. Au-Yeung, Y.-T. Poon, A remark on the convexity and positive definiteness concerning Hermitian matrices, Southeast Asian Bull. Math., 1979, 3, 85–92.Search in Google Scholar

[9] C. Badea, M. Crouzeix, B. Delyon, Convex domains and K-spectral sets, Math. Z., 2006, 252, 345–365.10.1007/s00209-005-0857-ySearch in Google Scholar

[10] K. Ball, Convex geometry and functional analysis, Handbook of the geometry of Banach spaces, Vol. I, 2001, North-Holland, Amsterdam, 161–194.10.1016/S1874-5849(01)80006-1Search in Google Scholar

[11] H. Bercovici, C. Foias, A. Tannenbaum, The structured singular value for linear input/output operators, SIAM J. Control Optim., 1996, 34, 1392–1404.10.1137/S0363012994268825Search in Google Scholar

[12] G. Björck, V. Thomée, A property of bounded normal operators in Hilbert space, Ark. Mat., 1963, 4, 551–555.10.1007/BF02591603Search in Google Scholar

[13] F. F. Bonsall, J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, 1971, London Mathematical Society Lecture Note Series, Cambridge University Press, London-New York.10.1017/CBO9781107359895Search in Google Scholar

[14] F. F. Bonsall, J. Duncan, Numerical ranges, II, 1973, London Mathematical Society Lecture Notes Series, Cambridge University Press, New York-London.10.1017/CBO9780511662515Search in Google Scholar

[15] S. Botelho-Andrade, Chi-Kwong Li, Generalized numerical ranges, dilation, and quantum error correction, Recent trends in operator theory and applications, Contemp. Math., 2019, 737, AMS, Providence, RI, 25–42.10.1090/conm/737/14856Search in Google Scholar

[16] J. C. Bourin, Compressions and pinchings, J. Operator Theory, 2003, 50, 211–220.Search in Google Scholar

[17] M. Bownik, J. Jasper, Characterization of sequences of frame norms, J. Reine Angew. Math., 2011, 654, 219–244.10.1515/crelle.2011.035Search in Google Scholar

[18] M. Bownik, J. Jasper, The Schur-Horn theorem for operators with finite spectrum, Trans. Amer. Math. Soc., 2015, 367, 5099–5140.10.1090/S0002-9947-2015-06317-XSearch in Google Scholar

[19] T. Caldwell, A. Greenbaum, K. Li, Some extensions of the Crouzeix-Palencia result, SIAM J. Matrix Anal. Appl., 2018, 39, 769–780.10.1137/17M1140832Search in Google Scholar

[20] G. Cassier, Image numérique simultanée d’une famille d’opérateurs sur l’espace de Hilbert, Integral Equations Operator Theory, 1990, 13, 334–349.10.1007/BF01199889Search in Google Scholar

[21] M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal., 2007, 244, 668–690.10.1016/j.jfa.2006.10.013Search in Google Scholar

[22] M. Crouzeix, A functional calculus based on the numerical range: applications, Linear Multilinear Algebra, 2008, 56, 81–103.10.1080/03081080701336610Search in Google Scholar

[23] M. Crouzeix, C. Palencia, The numerical range is a (1+2) spectral set, SIAM J. Matrix Anal. Appl., 2017, 38, 649–655.10.1137/17M1116672Search in Google Scholar

[24] A. T. Dash, Joint numerical range, Glasnik Mat. Ser. III, 1972, 7, 75–81.Search in Google Scholar

[25] A. T. Dash, Tensor products and joint numerical range, Proc. Amer. Math. Soc., 1973, 40, 521–526.10.1090/S0002-9939-1973-0336380-9Search in Google Scholar

[26] K. Davidson, L. Marcoux, Linear spans of unitary and similarity orbits of a Hilbert space operator, J. Operator Theory, 2004, 52, 113–132.Search in Google Scholar

[27] C. Davis, The Toeplitz-Hausdor˙ theorem explained, Canad. Math. Bull., 1971, 14, 245–246.10.4153/CMB-1971-042-7Search in Google Scholar

[28] C. Davis, C.-K. Li, A. Salemi, Polynomial numerical hulls of matrices, Linear Algebra Appl., 2008, 428, 137–153.10.1016/j.laa.2007.08.013Search in Google Scholar

[29] B. Delyon, F. Delyon, Generalization of von Neumann’s spectral sets and integral representation of operators, Bull. Soc. Math. France, 1999, 127, 25–41.10.24033/bsmf.2340Search in Google Scholar

[30] R. Drnovsek, V. Müller, On joint numerical radius, II, Linear Multilinear Algebra, 2014, 62, 1197–1204.10.1080/03081087.2013.816303Search in Google Scholar

[31] L. Faybusovich, Jordan-algebraic approach to convexity theorems for quadratic mappings, SIAM J. Optim., 2006, 17, 558–576.10.1137/050635560Search in Google Scholar

[32] P. Fan, On the diagonal of an operator, Trans. Amer. Math. Soc., 1984, 283, 239–251.10.1090/S0002-9947-1984-0735419-8Search in Google Scholar

[33] M. Fan, Garske’s inequality for an n-tuple of operators, Integral Equations Operator Theory, 1991, 14, 787–793.10.1007/BF01198937Search in Google Scholar

[34] A. Feintuch, A. Markus, The Toeplitz-Hausdor˙ theorem and robust stability theory, Math. Intelligencer, 1999, 21, 33–37.10.1007/BF03025413Search in Google Scholar

[35] I. Feldman, N. Krupnik, A. Markus, Convexity of ranges and connectedness of level sets of quadratic forms, Characteristic functions, scattering functions and transfer functions, Oper. Theory Adv. Appl., 2010, 197, Birkhäuser, Basel, 149–179.10.1007/978-3-0346-0183-2_8Search in Google Scholar

[36] P. A. Fillmore, J. G. Stampfli, J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged), 1972, 33, 179–192.Search in Google Scholar

[37] C.-K. Fong, A. R. Sourour, Renorming, similarity and numerical ranges, J. London Math. Soc., 1978, 18, 511–518.10.1112/jlms/s2-18.3.511Search in Google Scholar

[38] C.-K. Fong, On the essential maximal numerical range, Acta Sci. Math. (Szeged), 1979, 41, 307–315.Search in Google Scholar

[39] C.-K. Fong, Diagonals of nilpotent operators, Proc. Edinburgh Math. Soc., 1986, 29, 221–224.10.1017/S0013091500017594Search in Google Scholar

[40] C.-K. Fong, H. Radjavi, P. Rosenthal, Norms for matrices and operators, J. Operator Theory, 1987, 18, 99–113.Search in Google Scholar

[41] T. Gallay, D. Serre, Numerical measure of a complex matrix, Comm. Pure Appl. Math., 2012, 65, 287–336.10.1002/cpa.20374Search in Google Scholar

[42] G. Garske, An inequality concerning the smallest disc that contains the spectrum of an operator, Proc. Amer. Math. Soc., 1980, 78, 529–532.10.1090/S0002-9939-1980-0556626-5Search in Google Scholar

[43] K. Gustafson, D. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices, 1997 Springer, NY.10.1007/978-1-4613-8498-4_1Search in Google Scholar

[44] E. Gutkin, The Toeplitz-Hausdor˙ theorem revisited: relating linear algebra and geometry, Math. Intelligencer,2004, 26, 8–14.10.1007/BF02985393Search in Google Scholar

[45] E. Gutkin, E. Jonckheere, M. Karow, Convexity of the joint numerical range: topological and di˙erential geometric viewpoints, Linear Algebra Appl., 2004, 376, 143–171.10.1016/j.laa.2003.06.011Search in Google Scholar

[46] D. Hamdan, Fourier-Stieltjes transforms of Rajhman measures with full support on the circle, J. Dyn. Control Syst., 2013, 19, 277–286.10.1007/s10883-013-9172-9Search in Google Scholar

[47] F. Hausdor˙, Der Wertvorrat einer Bilinearform, Math. Z., 1919, 3, 314–316.10.1007/BF01292610Search in Google Scholar

[48] W. Helton, I. M. Spitkovsky, The possible shapes of numerical ranges, Oper. Matrices, 2012, 6, 607–611.10.7153/oam-06-41Search in Google Scholar

[49] D. Herrero, The diagonal entries of a Hilbert space operator, Rocky Mountain J. Math., 1991, 21, 857–864.10.1216/rmjm/1181072973Search in Google Scholar

[50] S. Hildebrandt, The closure of the numerical range of an operator as spectral set, Comm. Pure Appl. Math., 1964, 17, 415–421.10.1002/cpa.3160170403Search in Google Scholar

[51] S. Hildebrandt, Über den numerischen Wertebereich eines operators, Math. Ann., 1966, 163, 230–247.10.1007/BF02052287Search in Google Scholar

[52] J.-B. Hiriart-Urruty, M. Torki, Permanently going back and forth between the “quadratic world” and the “convexity world” in optimization, Appl. Math. Optim., 2002, 45, 169–184.10.1007/s00245-001-0034-6Search in Google Scholar

[53] J. Jasper, J. Loreaux, G. Weiss, Thompson’s theorem for compact operators and diagonals of unitary operators, Indiana Univ. Math. J., 2018, 67, 1–27.10.1512/iumj.2018.67.6291Search in Google Scholar

[54] E. Jonckheere, F. Ahmad, E. Gutkin, Di˙erential topology of numerical range, Linear Algebra Appl., 1998, 279, 227–254.10.1016/S0024-3795(98)00021-4Search in Google Scholar

[55] R. V. Kadison, The Pythagorean Theorem I: the finite case, Proc. Natl. Acad. Sci. USA, 2002, 99, 4178–4184.10.1073/pnas.032677199Search in Google Scholar PubMed PubMed Central

[56] R. V. Kadison, The Pythagorean Theorem II: the infinite discrete case, Proc. Natl. Acad. Sci. USA, 2002, 99, 5217–5222.10.1073/pnas.032677299Search in Google Scholar PubMed PubMed Central

[57] V. Kaftal, G. Weiss, An infinite dimensional Schur-Horn theorem and majorization theory, J. Funct. Anal., 2010, 259, 3115–3162.10.1016/j.jfa.2010.08.018Search in Google Scholar

[58] V. Kaftal, J. Loreaux, Kadison’s Pythagorean theorem and essential codimension, Integral Equations Operator Theory, 2017, 87, 565–580.10.1007/s00020-017-2365-ySearch in Google Scholar

[59] M. Kennedy, P. Skoufranis, The Schur-Horn problem for normal operators, Proc. Lond. Math. Soc., 2015, 111, 354–380.10.1112/plms/pdv030Search in Google Scholar

[60] M. Kennedy, P. Skoufranis, Thompson’s theorem for II1 factors, Trans. Amer. Math. Soc., 2017, 369, 1495–1511.10.1090/tran/6711Search in Google Scholar

[61] C.-K. Li, Y-T. Poon, Convexity of the joint numerical range, SIAM J. Matrix Anal. Appl., 1999, 21, 668–678.10.1137/S0895479898343516Search in Google Scholar

[62] C.-K. Li, Y.-T. Poon, N.-S. Sze, Davis-Wielandt shells of operators, Oper. Matrices, 2008, 2, 341–355.10.7153/oam-02-20Search in Google Scholar

[63] C.-K. Li, Y.-T. Poon, The joint essential numerical range of operators: convexity and related results, Studia Math., 2009, 194, 91–104.10.4064/sm194-1-6Search in Google Scholar

[64] C.-K. Li, Y.-T. Poon, Generalized numerical ranges and quantum error correction, J. Operator Theory, 2011, 66, 335–351.Search in Google Scholar

[65] B. Lins, I. M. Spitkovsky, S. Zhong, The normalized numerical range and the Davis-Wielandt shell, Linear Algebra Appl., 2018, 546, 187–209.10.1016/j.laa.2018.01.027Search in Google Scholar

[66] J Loreaux, G. Weiss, Diagonality and idempotents with applications to problems in operator theory and frame theory, J. Operator Theory, 2016, 75, 91–118.10.7900/jot.2014nov05.2054Search in Google Scholar

[67] J. Loreaux, Diagonals of operators: majorization, a Schur-Horn theorem and zero-diagonal idempotents (PhD thesis), 2016, Ohio State University, https://etd.ohiolink.edu.Search in Google Scholar

[68] R. Lyons, Seventy years of Rajchman measures, Proceedings of the Conference in Honor of J.-P. Kahane, J. Fourier Anal. Appl., 1995, Special Issue, 363–377.10.1201/9780429332838-22Search in Google Scholar

[69] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras (2nd ed.), 2007, Operator Theory: Advances and Applications, 139, Birkhäuser, Basel.Search in Google Scholar

[70] V. Müller, The joint essential numerical range, compact perturbations, and the Olsen problem, Studia Math., 2010, 197, 275–290.10.4064/sm197-3-5Search in Google Scholar

[71] V. Müller, On joint numerical radius, Proc. Amer. Math. Soc., 2014, 142, 1371–1380.10.1090/S0002-9939-2014-11876-4Search in Google Scholar

[72] V. Müller, Y. Tomilov, Circles in the spectrum and the geometry of orbits: A numerical ranges approach, J. Funct. Anal., 2018, 274, 433–460.10.1016/j.jfa.2017.10.015Search in Google Scholar

[73] V. Müller, Y. Tomilov, Joint numerical ranges and compressions of powers of operators, J. London Math. Soc. (2), 2019, 99, 127–152.10.1112/jlms.12165Search in Google Scholar

[74] V. Müller, Y. Tomilov, Diagonals of operators and Blaschke’s enigma, Trans. Amer. Math. Soc., 2019, 372, 3565–3595.10.1090/tran/7804Search in Google Scholar

[75] M. Putinar, C. Sandberg, A skew normal dilation on the numerical range of an operator, Math. Ann., 2005, 331, 345–357.10.1007/s00208-004-0585-3Search in Google Scholar

[76] M. Radjabalipour, H. Radjavi, On the geometry of numerical ranges, Pacific J. Math., 1975, 61, 507–511.10.2140/pjm.1975.61.507Search in Google Scholar

[77] T. Ransford, F. Schwenninger, Remarks on the Crouzeix-Palencia proof that the numerical range is a (1+2)-spectral set, SIAM J. Matrix Anal. Appl., 2018, 39, 342–345.10.1137/17M1143757Search in Google Scholar

[78] E. Roldán-Pensado, Infinite numerical range is convex, Linear Multilinear Algebra, 2008, 56, 731–733.10.1080/03081080701750851Search in Google Scholar

[79] J. G. Stampfli, J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. J., 1968, 20, 417–424.10.2748/tmj/1178243070Search in Google Scholar

[80] J. G. Stampfli, The norm of a derivation, Pacific J. Math., 1970, 33, 737–747.10.2140/pjm.1970.33.737Search in Google Scholar

[81] Q. Stout, Schur products of operators and the essential numerical range, Trans. Amer. Math. Soc., 1981, 264, 39–47.10.1090/S0002-9947-1981-0597865-2Search in Google Scholar

[82] O. Toeplitz, Das algebraische Analogon zu einem Satz von Fejér, Math. Z., 1918, 2, 187–197.10.1007/BF01212904Search in Google Scholar

[83] H. Widom, Hankel matrices, Trans. Amer. Math. Soc., 1966, 121, 1–35.10.1090/S0002-9947-1966-0187099-XSearch in Google Scholar

[84] J. P. Williams, Similarity and the numerical range, J. Math. Anal. Appl., 1969, 26, 307–314.10.1016/0022-247X(69)90154-1Search in Google Scholar

[85] V. Wrobel, Joint spectra and joint numerical ranges for pairwise commuting operators in Banach spaces, Glasg. Math. J., 1988, 30, 145–153.10.1017/S0017089500007163Search in Google Scholar

Received: 2019-12-30
Accepted: 2020-06-05
Published Online: 2020-08-20

© 2020 V. Müller et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/conop-2020-0102/html
Scroll to top button