Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-23T16:47:25.026Z Has data issue: false hasContentIssue false

Greenlizardite, (NH4)Na(UO2)2(SO4)2(OH)2·4H2O, a new mineral with phosphuranylite-type uranyl sulfate sheets from Red Canyon, San Juan County, Utah, USA

Published online by Cambridge University Press:  28 February 2018

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
*

Abstract

The new mineral greenlizardite (IMA2017-001), (NH4)Na(UO2)2(SO4)2(OH)2·4H2O, was found in the Green Lizard mine, Red Canyon, San Juan County, Utah, USA, where it occurs as a secondary alteration phase. It is associated with ammoniozippeite, boussingaultite and dickite. It forms as light green-yellow blades up to ~0.3 mm long. The mineral is vitreous and transparent with a white streak. It fluoresces greenish blue in 405 nm light. Mohs hardness is ~2. Crystals are brittle with irregular fracture and two cleavages: perfect {001} and good {2$\bar 1$0}. Greenlizardite is easily soluble in room-temperature H2O. The calculated density is 3.469 g cm–3. Optically, it is biaxial (+) with α = 1.559(1), β = 1.582(1) and γ = 1.608(1) (measured in white light). The measured 2V is 88(1)°; the calculated 2V is 87.8°. Dispersion is moderate, r < v. Pleochroism is X = very pale yellow green, Y = pale yellow green and Z = light yellow green; X < Y < Z. The optical orientation is Xc, Ya and Zb*. The Raman spectrum exhibits bands attributable to both sulfate and uranyl groups. Electron probe microanalyses (with H2O based on the crystal structure) yielded (NH4)0.98Na1.00U1.96S2.04O18.00H10.02. Greenlizardite is triclinic, P$\bar 1$, a = 6.83617(17), b = 9.5127(3), c = 13.8979(10) Å, α = 98.636(7), β = 93.713(7), γ = 110.102(8)°, V = 832.49(8) Å3 and Z = 2. The crystal structure (R1 = 2.39% for 2542 I > 2σI) contains edge-sharing dimers of UO7 pentagonal bipyramids. The dimers link by sharing corners with SO4 groups to form a [(UO2)2(SO4)2(OH)2]2– sheet based on the phosphuranylite anion topology. Zig-zag edge-sharing chains of NaO6 octahedra link adjacent [(UO2)2(SO4)2(OH)2]2– sheets, forming thick slabs. NH4 bonds to O atoms in adjacent slabs linking them together. H2O groups occupy channels in the slabs and space between the slabs.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Stuart Mills

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.Google Scholar
Brittain, H.G., Ansari, P., Toivonen, J., Niinisto, L., Tsao, L. and Perry, D.L. (1985) Photophysical studies of uranyl complexes. VIII. Luminiscence spectra of UO2SO4·3½H2O and two polymorphs of bis(urea) uranyl sulfate. Journal of Solid State Chemistry, 59, 259264.Google Scholar
Bullock, H. and Parret, F.W. (1970) The low frequency infrared and Raman spectroscopic studies of some uranyl complexes: the deformation frequency of the uranyl ion. Canadian Journal of Chemistry, 48, 30953097.Google Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357361.Google Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Canadian Mineralogist, 43, 18391894.Google Scholar
Chenoweth, W.L. (1993) The Geology and Production History of the Uranium Deposits in the White Canyon Mining District, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O…O hydrogen bonds. Acta Crystallographica, B44, 341344.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R. and González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Kasatkin, A.V., Čejka, J. and Marty, J. (2015 a) Plášilite, Na(UO2)(SO4)(OH)·2H2O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 60, 110.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015 b) Bobcookite, NaAl(UO2)2(SO4)4·18H2O and wetherillite, Na2Mg(UO2)2(SO4)4·18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2015 c) Fermiite, Na4(UO2)(SO4)3·3H2O and oppenheimerite, Na2(UO2)(SO4)2·3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 11231142.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J., Čejka, J. and Lapčák, L. (2017) Shumwayite, [(UO2)(SO4)(H2O)2]2·H2O, a new uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineralogical Magazine, 81, 273285.Google Scholar
Krivovichev, S.V. and Burns, P.C. (2007) Actinide compounds containing hexavalent cations of the VI group elements (S, Se, Mo, Cr, W). Pp. 95182 in: Structural Chemistry of Inorganic Actinide Compounds (Krivovichev, S.V., Burns, P.C. and Tananaev, I.G., editors). Elsevier, Amsterdam.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralogist, 45, 13071324.Google Scholar
Mereiter, K. (1982) Die Kristallstrukturs des Johannits, Cu(UO2)2(OH)2(SO4)2·8H2O. Tschermaks Mineralogische und Petrographische Mitteilungen, 30, 4757.Google Scholar
Ohwada, K. (1976) Infrared spectroscopic studies of some uranyl nitrate complexes. Journal of Coordination Chemistry, 6, 7580.Google Scholar
Plášil, J., Buixaderas, E., Čejka, J., Sejkora, J., Jehlička, J. and Novák, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U–O stretching regions. Analytical and Bioanalytical Chemistry, 397, 27032715.Google Scholar
Plášil, J., Hauser, J., Petříček, V., Meisser, N., Mills, S.J., Škoda, R., Fejfarová, K., Čejka, J., Sejkora, J., Hloušek, J., Johannet, J.-M., Machovič, V. and Lapčák, L. (2012) Crystal structure and formula revision of deliensite, Fe[(UO2)2(SO4)2(OH)2](H2O)7. Mineralogical Magazine, 76, 28372860.Google Scholar
Plášil, J., Meisser, N. and Čejka, J. (2016) The crystal structure of Na6[(UO2)(SO4)4](H2O)4: X-ray and Raman spectroscopy study. Canadian Mineralogist, 54, 520.Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantification, (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Volkovich, V.A., Griffiths, T.R., Fray, D.J. and Fields, M. (1998) Vibrational spectra of alkali metal (Li, Na and K) uranates and consequent assignment of uranate ion site symmetry. Vibrational Spectroscopy, 17, 8391.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 153.8 KB