Skip to main content

Advertisement

Log in

Possible role of extracellular tissue in biological neural networks

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the present paper, we analyze the role of extracellular tissue (ECT) in signal transfer and information processing in biological neural networks. Our speculative approach, which is based mainly on the facts taken from the literature, is completed by simple original models and quantitative estimates. It is shown that the presence of ECT controls some fundamental parameters of immersed biological neural network, which are traditionally treated as intrinsic to neuron membranes. We then propose that the diffusive transfer of action potential via the nervous fiber together with processes induced in the surrounding ECT, is ultimately controlled, in contrast to the standard paradigm, by the quantum diffusion of \(\hbox {Na}^{{+}}\) and \(\hbox {K}^{{+}}\) ions, which minimizes the heat production in nervous tissue. Furthermore the diffusion of polarization wave along the axon membrane excites in surrounding ECT temporal potential distribution, which can bias the synapses and dendrites of all vicinal neurons. We claim that just this, so-called, ephaptic coupling between neighboring neurons, completes the local neural network and in fact is responsible for information processing there. Such an idea is obviously incompatible with current models of neural networks of McCulloch–Pitts’ and Rosenblatt’s type, which assume that the information processing takes place exclusively within the neuron soma, being thus convenient merely for the description of artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.J. Amit, Modeling Brain Function, The World of Attractor Neural Networks (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  2. K. Gurney, An Introduction to Neural Networks (UCL Press—Taylor and Francis Group, London, 2004)

    Google Scholar 

  3. Ch. Koch, Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, Oxford, 2004)

    Google Scholar 

  4. E. Yong, Neurons talk without synapses. The Scientist Magazine, Nov. 21 (2012)

  5. L.R. Squire, D. Berg, F.E. Bloom, S. du Lac, A. Ghosh, N.C. Spitzer, Fundamental Neuroscience, 4th edn. (Elsevier—-Acad. Press, Amsterdam, 2012)

    Google Scholar 

  6. E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth (eds.), Principles of Neural Science, 5th edn. (McGraw-Hill, New York, 2013)

    Google Scholar 

  7. S. Murakami, Y. Okada, Invariance in current dipole moment across brain structures and species: physiological constrain for neuroimaging. Neuroimage 111, 49–58 (2015)

    Article  Google Scholar 

  8. D.L. Schomer, F.H.L. da Silva, Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 7th edn. (Oxford University Press, Oxford, 2017)

    Book  Google Scholar 

  9. B. Katz, O.H. Schmitt, Electric interaction between two adjacent nerve fibres. J. Physiol. 97, 471–488 (1940)

    Article  Google Scholar 

  10. J.G.R. Jefferys, Nonsynaptic modulation of neural activity in the brain: electric currents and extracellular ions. Physiol. Rev. 75, 689–723 (1995)

    Article  Google Scholar 

  11. C.A. Anastassiou, R. Perin, H. Markram, C. Koch, Ephaptic coupling of cortical neurons. Nat. Neurosci. 14, 217–223 (2011)

    Article  Google Scholar 

  12. C.-Y. Su, K. Menuz, J. Reisert, J.R. Carlson, Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492, 66–72 (2012)

    Article  ADS  Google Scholar 

  13. A.R. Shifman, J.E. Lewis, ELFENN: a generalized platform for modeling ephaptic coupling in spiking neuron models. Front. Neuroinform. 13, art. 35 (2019)

  14. G. Ruffini et al., Realistic modeling of ephaptic fields in the human brain. https://www.biorxiv.org/content/10.1101/688101v1.full

  15. A. Galvani, De Viribus Electricitatis in Motu Masculari Commentarius. Bononiae, 1791. Russian translation in: A. Galvani i A. Volta, Izbrannye raboty o zhivotnom elektritschestve, ed. by E.E. Goldenberg, A.V. Lebedinskii (OGIZ, Leningrad, 1937)

  16. S. Ramón y Cajal, The structure and connections of neurons. Nobel Lecture, Dec. 12 (1906)

  17. S. Exner, Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen (Vienna, 1894). Reprinted in Ostwalds Klassiker der exakten Wissenschaften, B. 285 (Harri Deutsch, Thun/Frankfurt a.M., 1999)

  18. E. Adrian, The activity of nerve fibres. The Nobel Prize Edgar Adrian lecture (1932)

  19. L. Kostal, P. Lansky, J.P. Rospars, Neuronal coding and spiking randomness. Eur. J. Neurosci. 26, 2693–2701 (2007)

    Article  Google Scholar 

  20. S.D. Barberies, Cajal’s law of dynamic polarization: mechanism and design. Philosophies 3, 11–26 (2018)

    Article  Google Scholar 

  21. A.G. Petrov, P.N.R. Usherwood, Mechanosensitivity of cell membranes. Eur. Biophys. J. 23, 1–19 (1994)

    Article  Google Scholar 

  22. D.O. Hebb, The Organisation of Behaviour (Wiley, New York, 1949)

    Google Scholar 

  23. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organisation in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  25. J.L. Wilkinson, Neuroanatomy for Medical Students, 2nd edn. (Butterworth-Heinemann, Oxford, 1992)

    Google Scholar 

  26. Y. Wang, Golgi apparatus inheritance, in The Golgi Apparatus, ed. by A.A. Mironov, M. Pavelka (Springer, Vienna, 2008)

    Google Scholar 

  27. A.L. Hodgkin, The Conduction of Nervous Impulse (Liverpool University Press, Liverpool, 1964)

    Google Scholar 

  28. A.C. Scott, The electrophysics of nerve fiber. Rev. Mod. Phys. 47, 487–533 (1975)

    Article  ADS  Google Scholar 

  29. J.C. Skou, M. Esmann, The Na, K-ATPase. J. Bioenerg. Biomembr. 24, 249–261 (1992)

    Article  Google Scholar 

  30. K.S. Cole, H.J. Curtis, Electric impedance of the squid axon during activity. J. Gen. Physiol. 22, 649–670 (1939)

    Article  Google Scholar 

  31. J.M. Ritchie, R.D. Keynes, The production and absorption of heat associated with electrical activity in nerve and electric organ. Q. Rev. Biophys. 392, 451–476 (1985)

    Article  Google Scholar 

  32. B.C. Abbott, A.V. Hill, J.V. Howarth, The positive and negative heat production associated with nerve impulse. Proc. R. Soc. Lond. B 148, 149–187 (1958)

    Article  ADS  Google Scholar 

  33. W. Rall, Core conductor theory and cable properties of neurons, in The Nervous System, Cellular Biology of Neurons, ed. by E.R. Kandel (Am. Physiol. Soc., Bethesda, 1977), p. 3997 (1977)

  34. J.D. Enderle, J. Bronzino, Introduction to Biomedical Engineering, 3rd edn. (Academic Press, New York, 2012)

    Google Scholar 

  35. T. Heimburg, A.D. Jackson, On the action potential as a propagating density pulse and the role of anesthetics. Biophys. Rev. Lett. 2, 57–70 (2007)

    Article  Google Scholar 

  36. T. Heimburg, Mechanical aspects of membrane thermodynamics. Biochim. Biophys. Acta 1415, 147–162 (1998)

    Article  Google Scholar 

  37. K.H. Meyer, Contributions to the theory of narcosis. Trans. Faraday Soc. 33, 1062–1068 (1937)

    Article  Google Scholar 

  38. T. Heimburg, A.D. Jackson, The thermodynamics of general anesthesia. Biophys. J. 92, 3159–3165 (2007)

    Article  ADS  Google Scholar 

  39. R. Milo, R. Phillips, Cell Biology by the Numbers (Garland Science, New York, 2016)

    Google Scholar 

  40. J.J. Mareš, P. Hubík, V. Špička, Diffusive propagation of nervous signals and their quantum control. Eur. Phys. J. Spec. Top. 227, 2329–2347 (2019)

    Article  Google Scholar 

  41. J.J. Mareš, J. Krištofik, P. Hubík, Ohm–Kirchhoff‘s law and screening in two-dimensional electron liquid. Phys. E 12, 340 (2002)

    Article  Google Scholar 

  42. W.G.V. Rosser, What makes an electric current flow. Am. J. Phys. 31, 884–885 (1963)

    Article  ADS  Google Scholar 

  43. K.S. Cole, Resistivity of axoplasm. J. Gen. Physiol. 66, 133–138 (1975)

    Article  Google Scholar 

  44. J.-M. Lévy-Leblond, F. Balibar, Quantics, Rudiments of Quantum Physics (North-Holland, Amsterdam, 1990)

    Google Scholar 

  45. L. de la Peña, A.M. Cetto, The Quantum Dice—An Introduction to Stochastic Electrodynamics (Kluwer Academic Publishers, Dordrecht, 1996)

    Google Scholar 

  46. M. Gouy, Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910)

    Article  MATH  Google Scholar 

  47. C. Lefron, P. Fabry, J.-C. Poignet, Electrochemistry, Basics, with Examples (Springer, New York, 2012)

    Google Scholar 

  48. P. Debye, E. Hückel, Zur Theorie der Elektrolyte. I. Gefrierpunktsniedrigung und verwandte Erscheinungen. Phys. Z. 24, 185–206 (1923)

    MATH  Google Scholar 

  49. W.T. Scott, Electron levels, electrochemical effects, and thermoelectricity. Am. J. Phys. 30, 727–737 (1962)

    Article  ADS  Google Scholar 

  50. W.C. Elmore, M.A. Heald, Physics of Waves (Dover Publications, New York, 1985)

    Google Scholar 

  51. B. Hille, Ion Channels of Excitable Membranes, 3rd edn. (Sinauern Associates Inc, Sunderland, 2001)

  52. S.G. Waxman, Axons. Encyclopedia of Life Sciences (Nature Publishing Group, 2001), pp. 1–5. http://www.els.net

  53. W. Kuang, S.O. Nelson, Low-frequency dielectric properties of biological tissues: a review with some new insights. Trans. ASAE 41, 173–184 (1998)

    Article  Google Scholar 

  54. R. Holm, Electric Contacts Handbook, 3rd edn. (Springer, Berlin, 1958)

    Google Scholar 

  55. R.K. Hobbie, B.J. Roth, Intermediate Physics for Medicine and Biology, 4th edn. (Springer, New York, 2007)

    MATH  Google Scholar 

  56. K.-H. Gonschorek, R. Vick, Electromagnetic Compatibility for Device Design and System Integration (Springer, Berlin, 2009), p. 90

    Book  Google Scholar 

  57. C.D. McCaig, A.M. Rajnicek, B. Song, M. Zhao, Controlling cell behavior electrically: current views and future potential. Phys. Rev. 85, 943–978 (2005)

    Google Scholar 

  58. S. Herculano-Houzel, The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, PMC 2776484 (2009)

  59. P. Hertz, Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlere Dichte im Raume angeordnet sind. Math. Ann. 67, 387–398 (1909)

    Article  MathSciNet  MATH  Google Scholar 

  60. B. Dell’Osso, A. Priori, A.C. Altamura, Efficacy and safety of transcranial direct current stimulation in major depression. Biol. Psychiatry 69, 23–24 (2011)

    Article  Google Scholar 

  61. K.S. Cole, Membranes, Ions and Impulses (University of California Press, Berkeley, 1972)

    Google Scholar 

  62. J.W. Strutt (Baron Rayleigh): The Theory of Sound (Vol. I., Macmillan & Co., London, 1877), p. 75

  63. J.R. Carson, A generalization of the reciprocal theorem. Bell Syst. Tech. J. 3, 393–399 (1924)

    Article  Google Scholar 

Download references

Acknowledgements

J.J.M. would like to acknowledge funding support from the Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (SOLID21—Project No. CZ.02.1.01/0.0/0.0/16_019/0000760).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří J. Mareš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareš, J.J., Špička, V. & Hubík, P. Possible role of extracellular tissue in biological neural networks. Eur. Phys. J. Spec. Top. 230, 1089–1098 (2021). https://doi.org/10.1140/epjs/s11734-021-00102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00102-3

Navigation