Skip to main content
Log in

Photosensor Device Based on a 16-Electrode Position-Sensitive Detector with High Temporal Resolution

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—We report the development of a photosensor device based on a position-sensitive detector with a gallium arsenide (GaAs) cathode and a 16-element anode. In the case of asymmetric heterostatic circuit (electrodes combined in fours) its working field was limited by 10 mm (for a 18-mm photocathode). Implementing a scheme of analog coding of the coordinates of the centroids of electron avalanches arriving to the anode in the photosensor device made it possible to increase the field size to 14 mm and achieve a spatial resolution of 50 μm. The resulting photosensor device is used as the principal component of a multimode field photopolarimeter in observations with a microsecond time resolution on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We report some of the results obtained in the process of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. http://www.timedomainastronomy.net/.

  2. http://www.andor.oxinst/products/ixon-emccd-camera.

REFERENCES

  1. M. R. Aibund, L. S. Gorn, M. A. Gruntman, et al., Pribory i tekhnika eksperimenta 1 (1), 70 (1984).

    Google Scholar 

  2. F. Ambrosino, A. Papitto, L. Stella, et al., Nature Astronomy 1, 854 (2017).

    Article  ADS  Google Scholar 

  3. H. O. Anger, Review of Scientific Instruments 29 (1), 27 (1958).

    Article  ADS  Google Scholar 

  4. G. Beskin, V. de-Bur, S. Karpov, et al., SPIE Conf. Ser., 7021, 702120 (2008).

  5. G. M. Beskin, V. G. Debur, and V. L. Plokhotnichenko, Physics of Neutron Stars, St. Petersburg, May 25–26, 1999, 1 (1999).

  6. V. de-Bur, A. Terekhov, S. Kosolobov, et al., AIP Conf. Ser. 984, 186 (2008).

  7. V. Debur, T. Arkhipova, G. Beskin, et al., Nuclear Instruments and Methods in Physics Research A 513 (1–2), 127 (2003).

    Article  ADS  Google Scholar 

  8. V. Debur and A. Solin, SAO RAS Technical Report No. 288, 1 (2002). [in Russian].

  9. V. G. Debur, G. M. Beskin, S. V. Karpov, et al., Astrophysical Bulletin 64 (4), 386 (2009).

    Article  ADS  Google Scholar 

  10. O. Dvornikov, Komponenty i tekhnologii 8, 184 (2005).

  11. O. Dvornikov, V. Chekhovsky, and A. Solin, Chip news 11–12, 28 (1997). [in Russian].

  12. S. S. Eikenberry, G. G. Fazio, and S. M. Ransom, Publ. Astron. Soc. Pacific 108, 939 (1996).

    Article  ADS  Google Scholar 

  13. M. A. Gruntman, Pribory i tekhnika eksperimenta 1 (1), 14 (1984).

    Google Scholar 

  14. D. R. Harbeck, T. Boroson, M. Lesser, et al., SPIE Conf. Ser. 9147, 91470P (2014).

  15. W. A. Hiltner, Astronomical techniques (1962).

  16. M. A. C. Perryman, F. Favata, A. Peacock, et al., Astron. and Astrophys. 346, L30 (1999).

    ADS  Google Scholar 

  17. D. Phelan, O. Ryan, and A. Shearer, High Time Resolution Astrophysics, vol. 351 (2008).

  18. V. Plokhotnichenko, G. Beskin, V. Debur, et al., Nuclear Instruments and Methods in Physics Research A 513 (1-2), 167 (2003).

    Article  ADS  Google Scholar 

  19. V. Plokhotnichenko, G. Beskin, S. Karpov, et al., Advances in Astronomy 2010, 109681 (2010).

    Article  Google Scholar 

  20. V. L. Plokhotnichenko, G. M. Beskin, S. V. Karpov, et al., Astrophysical Bulletin, 2020 (in press).

  21. V. L. Plokhotnichenko, G. M. Beskin, V. G. de Bur, et al., Astrophysical Bulletin 64 (3), 308 (2009a).

    Article  ADS  Google Scholar 

  22. V. L. Plokhotnichenko, G. M. Beskin, V. G. de Bur, et al., Astrophysical Bulletin 64 (3), 308 (2009b).

    Article  ADS  Google Scholar 

  23. V. L. Plokhotnichenko, G. M. Beskin, V. G. de Bur, et al., Astrophysical Bulletin 64 (3), 308 (2009c).

    Article  ADS  Google Scholar 

  24. V. L. Plokhotnichenko, G. M. Beskin, and V. G. Debur, Astrofizika na rubezhe vekov, Pushchino, May 17–22, 1999, 1 (1999).

  25. V. L. Plokhotnichenko, V. G. de Bur, S. V. Moiseev, et al., SAO RAS Technical Report No. 337, 1 (2018). [in Russian]

  26. R.W. Romani, A. J. Miller, B. Cabrera, et al., Astrophys. J. 563 (1), 221 (2001).

    Article  ADS  Google Scholar 

  27. A. Shearer, J. Cunni_e, B. Voisin, et al., AIP Conf. Ser. 984, 225 (2008).

  28. Y. A. Shibanov, G. M. Beskin, S. V. Karpov, et al., Journal of Physics Conf. Ser. 932, 012027 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues who took part in the development of the detectors based on new principles.

Funding

This work was carried out within the framework of “Fundamental Research” government contract of the Special Astrophysical Observatory of the Russian Academy of Sciences and the Federal program “Kazan Federal University Competitive Growth Program.” This work was supported by the Russian Foundation for Basic Research (projects nos. 04-02-17555, 06-02-08313, and 09-02-12053), INTAS (project no. 04-78-7366), and CRDF (project no. RP1-2394-MO-02). This work was partially supported by European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports (Project CoGraDS—CZ.02.1.01/0.0/0.0/15 003/0000437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Plokhotnichenko.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A. Dambis

APPENDIX

APPENDIX

Shown are the diagram of the charge-sensitive amplifier and the scheme of obtaining the coadded signals for computing the coordinate X. A similar scheme is used for the Y coordinate (Fig. 16, Fig. 17).

Fig. 16.
figure 16

Diagram of charge-sensitive amplifiers.

Fig. 17.
figure 17

Actual implementation of the scheme of analog coding of signals for the X coordinate on the board. HEADLER 3×2—sockets for connecting CSA, where (1) is the positive output; (3) the negative output; Xsump is the direct signal for operating amplifier Mx, and Xsumm is the inverted signal. Same for My (see Fig. 3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plokhotnichenko, V.L., Beskin, G.M., Karpov, S.V. et al. Photosensor Device Based on a 16-Electrode Position-Sensitive Detector with High Temporal Resolution. Astrophys. Bull. 75, 59–68 (2020). https://doi.org/10.1134/S199034132001006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034132001006X

Keywords:

Navigation