Skip to main content
Log in

Applying the Kalman filter particle method to strange and open charm hadron reconstruction in the STAR experiment

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

We applied KF Particle, a Kalman Filter package for secondary vertex finding and fitting, to strange and open charm hadron reconstruction in heavy-ion collisions in the STAR experiment. Compared to the conventional helix swimming method used in STAR, the KF Particle method considerably improved the reconstructed \(\Lambda\), \(\Omega\), and \(D^0\) significance. In addition, the Monte Carlo simulation with STAR detector responses could adequately reproduce the topological variable distributions reconstructed in real data using the KF Particle method, thereby retaining substantial control of the reconstruction efficiency uncertainties for strange and open charm hadron measurements in heavy-ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00250 and https://cstr.cn/31253.11.sciencedb.j00186.00250.

References

  1. P. Koch, B. Muller, J. Rafelski, Strangeness in relativistic heavy ion collisions. Phys. Rep. 142, 167–262 (1986). https://doi.org/10.1016/0370-1573(86)90096-7

    Article  ADS  Google Scholar 

  2. S. Frixione, M.L. Mangano, P. Nason et al., Heavy quark production. Adv. Ser. Direct. High Energy Phys. 15, 609–706 (1998). https://doi.org/10.1142/9789812812667_0009

    Article  ADS  Google Scholar 

  3. X. Dong, Y.-J. Lee, R. Rapp, Open heavy-flavor production in heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 69, 417–445 (2019). https://doi.org/10.1146/annurev-nucl-101918-023806

    Article  ADS  Google Scholar 

  4. P.A. Zyla, R.M. Barnett, J. Beringer et al., Review of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

    Article  Google Scholar 

  5. J. Adam, L. Adamczyk, J.R. Adams et al., Centrality and transverse momentum dependence of \(D^0\)-meson production at mid-rapidity in Au+Au collisions at \({\sqrt{s_{{\rm NN}}} = \rm {200\, GeV}}\). Phys. Rev. C 99(3), 034908 (2019). https://doi.org/10.1103/PhysRevC.99.034908

    Article  ADS  Google Scholar 

  6. J. Adam, L. Adamczyk, J.R. Adams et al., Strange hadron production in Au+Au collisions at \(\sqrt{s_\text{ NN }}=\)7.7, 11.5, 19.6, 27, and 39 GeV. Phys. Rev. C 102(3), 034909 (2020). https://doi.org/10.1103/PhysRevC.102.034909

    Article  ADS  Google Scholar 

  7. M.S. Abdallah, B.E. Aboona, J. Adam et al., Measurements of \(H_\Lambda ^3\) and \(H_\Lambda ^4\) lifetimes and yields in Au+Au collisions in the high-baryon density region. Phys. Rev. Lett. 128(20), 202301 (2022). https://doi.org/10.1103/PhysRevLett.128.202301

    Article  ADS  Google Scholar 

  8. K. Ackermann, N. Adams, C. Adler et al., STAR detector overview. Nucl. Instrum. Meth. A 499, 624–632 (2003). https://doi.org/10.1016/S0168-9002(02)01960-5

    Article  ADS  Google Scholar 

  9. M. Anderson, J. Berkovitz, W. Betts et al., The STAR time projection chamber: a unique tool for studying high-multiplicity events at RHIC. Nucl. Instrum. Meth. A 499, 659–678 (2003). https://doi.org/10.1016/S0168-9002(02)01964-2

    Article  ADS  Google Scholar 

  10. G. Contin, L. Greiner, J. Schambach et al., The STAR MAPS-based PiXeL detector. Nucl. Instrum. Meth. A 907, 60–80 (2018). https://doi.org/10.1016/j.nima.2018.03.003

    Article  ADS  Google Scholar 

  11. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Measurement of \(D^0\) azimuthal anisotropy at midrapidity in Au+Au collisions at \(\sqrt{s_{NN}}\)=200 GeV. Phys. Rev. Lett. 118(21), 212301 (2017). https://doi.org/10.1103/PhysRevLett.118.212301

    Article  ADS  Google Scholar 

  12. J. Adam, L. Adamczyk, J.R. Adams et al., First measurement of \(\Lambda _c\) baryon production in Au+Au collisions at \(\sqrt{s_{\rm NN}}\) = 200 GeV. Phys. Rev. Lett. 124(17), 172301 (2020). https://doi.org/10.1103/PhysRevLett.124.172301

    Article  ADS  Google Scholar 

  13. J. Adam, L. Adamczyk, J.R. Adams et al., Observation of \(D_{s}^{\pm }/D^0\) enhancement in the Au+Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV. Phys. Rev. Lett. 127, 092301 (2021). https://doi.org/10.1103/PhysRevLett.127.092301

    Article  ADS  Google Scholar 

  14. Z. Tang, W. Zha, Y. Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC. Nucl. Sci. Tech. 31(8), 81 (2020). https://doi.org/10.1007/s41365-020-00785-8

    Article  Google Scholar 

  15. X. Luo, S. Shi, N. Xu et al., A study of the properties of the QCD phase diagram in high-energy nuclear collisions. Particles 3(2), 278–307 (2020). https://doi.org/10.3390/particles3020022

    Article  Google Scholar 

  16. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Observation of \(D^0\) meson nuclear modifications in Au+Au collisions at \(\sqrt{s_{NN}}=200\) GeV. Phys. Rev. Lett. 113(14), 142301 (2014). https://doi.org/10.1103/PhysRevLett.113.142301

    Article  ADS  Google Scholar 

  17. M.S. Abdallah, B.E. Aboona, J. Adam et al., Evidence of mass ordering of charm and bottom quark energy loss in Au+Au collisions at RHIC. Eur. Phys. J. C 82(12), 1150 (2022). https://doi.org/10.1140/epjc/s10052-022-11003-7

    Article  ADS  Google Scholar 

  18. F. Si, X. Chen, L. Zhou et al., Charm and beauty isolation from heavy flavor decay electrons in Au+Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV at RHIC. Phys. Lett. B 805, 135465 (2020). https://doi.org/10.1016/j.physletb.2020.135465

    Article  Google Scholar 

  19. D. Li, F. Si, Y. Zhao et al., Charm and beauty isolation from heavy flavor decay electrons in p+p and Pb+Pb collisions at \(\sqrt{s_{NN}}\) = 5.02 TeV at LHC. Phys. Lett. B 832, 137249 (2022). https://doi.org/10.1016/j.physletb.2022.137249

    Article  Google Scholar 

  20. H. Voss, A. Höcker, J. Stelzer et al., TMVA, the Toolkit for Multivariate Data Analysis with ROOT. PoS ACAT, 040 (2009). https://doi.org/10.22323/1.050.0040

  21. R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960). https://doi.org/10.1115/1.3662552

    Article  MathSciNet  Google Scholar 

  22. R. Frühwirth, et al., Data Analysis Techniques for High-Energy Physics, 2nd Ed. Cambridge (2000)

  23. S. Gorbunov, On-line reconstruction algorithms for the CBM and ALICE experiments. PhD. Thesis (2013). https://nbn-resolving.org/urn:nbn:de:hebis:30:3-295385

  24. M. Zyzak, Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR. PhD. Thesis (2016). https://nbn-resolving.org/urn:nbn:de:hebis:30:3-414288

  25. R. Brun, F. Bruyant, M. Maire et al., GEANT 3: user’s guide Geant 3.10, Geant 3.11; rev. version. CERN, Geneva (1987). https://cds.cern.ch/record/1119728

  26. H. Drucker, C. Cortes, Boosting decision trees. In Proceedings of the 8th International Conference on Neural Information Processing Systems Vol. 8, pp. 479-485 (1995)

  27. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Probing parton dynamics of QCD matter with \(\Omega\) and \(\phi\) production. Phys. Rev. C 93(2), 021903 (2016). https://doi.org/10.1103/PhysRevC.93.021903

    Article  ADS  Google Scholar 

  28. R. Ralf, Bottomonium suppression in heavy-ion collisions and the in-medium strong force. Nucl. Sci. Tech. 34, 63 (2023). https://doi.org/10.1007/s41365-023-01213-3

    Article  Google Scholar 

  29. Y. Ma, Hypernuclei as a laboratory to test hyperon-nuucleon interactions. Nucl. Sci. Tech. 34(6), 97 (2023). https://doi.org/10.1007/s41365-023-01248-6

    Article  Google Scholar 

  30. N. Li, Z. Sun, X. Liu et al., Perfect \(DD^*\) molecular prediction matching the \(T_{cc}\) observation at LHCb. Chin. Phys. Lett. 38(9), 092001 (2021). https://doi.org/10.1088/0256-307X/38/9/092001

    Article  ADS  Google Scholar 

  31. R. Aaij, Search for the doubly charmed baryon \(\Omega _{cc}^+\). Sci. China Phys. Mech. 64(10), 101062 (2021). https://doi.org/10.1007/s11433-021-1742-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the STAR Collaboration, RHIC Operations Group, RCF at BNL, and NERSC Center at LBNL for their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, and analysis were performed by Xin-Yue Ju and Yue-Hang Leung. Data collection are performed by the RHIC-STAR collaboration and the Monte Carlo simulation thanks to Sooraj Radhakrishnann and Xiang-Lei Zhu. The first draft of the manuscript was written by Xin-Yue Ju,Yue-Hang Leung, Xin Dong and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi-Fei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11890712 and 12061141008) and the National Key R &D Program of China (Nos. 2018YFE0104700 and 2018YFE0205200). This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science; Yue-Hang Leung was partially supported by the GSI-Heidelberg cooperation contract.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, XY., Leung, YH., Radhakrishnann, S. et al. Applying the Kalman filter particle method to strange and open charm hadron reconstruction in the STAR experiment. NUCL SCI TECH 34, 158 (2023). https://doi.org/10.1007/s41365-023-01320-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01320-1

Keywords

Navigation