Skip to main content
Log in

Veronese powers of operads and pure homotopy algebras

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We define the mth Veronese power of a weight graded operad to be its suboperad generated by operations of weight m. It turns out that, unlike Veronese powers of associative algebras, homological properties of operads are, in general, not improved by this construction. However, under some technical conditions, Veronese powers of quadratic Koszul operads are meaningful in the context of the Koszul duality theory. Indeed, we show that in many important cases the operads are related by Koszul duality to operads describing strongly homotopy algebras with only one nontrivial operation. Our theory has immediate applications to objects such as Lie k-algebras and Lie triple systems. In the case of Lie k-algebras, we also discuss a similarly looking ungraded construction which is frequently used in the literature. We establish that the corresponding operad does not possess good homotopy properties, and that it leads to a very simple example of a non-Koszul quadratic operad for which the Ginzburg–Kapranov power series test is inconclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Backelin, J.: On the rates of growth of the homologies of Veronese subrings. In: Roos, J.-E. (ed.) Algebra, Algebraic Topology and Their Interactions. Lecture Notes in Mathematics, vol. 1183, pp. 79–100. Springer, Berlin (1986)

    Google Scholar 

  2. Backelin, J.: Some homological properties of “high” Veronese subrings. J. Algebra 146(1), 1–17 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Backelin, J., Fröberg, R.: Koszul algebras, Veronese subrings and rings with linear resolutions. Rev. Roumaine Math. Pures Appl. 30(2), 85–97 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Bremner, M.: Private communication (2017)

  5. Bremner, M.R., Dotsenko, V.: Algebraic Operads. An algorithmic companion. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  6. Bremner, M.R., Felipe, R., Sánchez-Ortega, J.: Jordan triple disystems. Comput. Math. Appl. 63(6), 1039–1055 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bremner, M.R., Madariaga, S.: Dendriform analogues of Lie and Jordan triple systems. Commun. Algebra 42(11), 4696–4711 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Bremner, M., Madariaga, S.: Jordan quadruple systems. J. Algebra 412, 51–86 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Bremner, M.R., Sánchez-Ortega, J.: Leibniz triple systems. Commun. Contemp. Math. 16(1), #1350051 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Bremner, M.R., Sánchez-Ortega, J.: The partially alternating ternary sum in an associative dialgebra. J. Phys. A 43, #455215 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Bruce, A.J.: From \(L_\infty \)-algebroids to higher Schouten/Poisson structures. Rep. Math. Phys. 67(2), 157–177 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Chapoton, F.: Un endofoncteur de la catégorie des opérades. In: Dialgebras and Related Operads. Lectures Notes in Mathematics, vol. 1763, pp. 105–110. Springer, Berlin (2001)

  13. de Azcárraga, J.A., Izquierdo, J.M.: \(n\)-ary algebras: a review with applications. J. Phys. A Math. Theor. 43(29), # 293001(2010)

  14. Dotsenko, V., Khoroshkin, A.: Gröbner bases for operads. Duke Math. J. 153(2), 363–396 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Dotsenko, V., Khoroshkin, A.: Quillen homology for operads via Gröbner bases. Doc. Math. 18, 707–747 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Dotsenko, V., Markl, M., Remm, E.: Non-Koszulness for operads and positivity of Poincaré series (2016). arXiv:1604.08580. Accessed 28 Apr 2016

  17. Dzhumadil’daev, A.S.: \(N\)-commutators. Comment. Math. Helv. 79(3), 516–553 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Dzhumadil’daev, A.S.: \(n\)-Lie structures that are generated by Wronskians. Sib. Math. J. 46(4), 601–612 (2005)

    MATH  Google Scholar 

  19. Eisenbud, D., Reeves, A., Totaro, B.: Initial ideals, Veronese subrings, and rates of algebras. Adv. Math. 109(2), 168–187 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Getzer, E., Kapranov, M.: Cyclic operads and cyclic homology. In: Yau, S.-T. (ed.) Geometry, Topology and Physics. Conference Proceedings and Lecture Notes in Geometry and Topology, vol. IV, pp. 167–201. International Press, Cambridge (1995)

    Google Scholar 

  21. Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Goze, M., Goze, N., Remm, E.: \(n\)-Lie algebras. Afr. J. Math. Phys. 8(1), 17–28 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Hanlon, Ph., Wachs, M.: On Lie \(k\)-algebras. Adv. Math. 113(2), 206–236 (1995)

  24. Jacobson, N.: Lie and Jordan triple systems. Amer. J. Math. 71(1), 149–170 (1949)

    MathSciNet  MATH  Google Scholar 

  25. Jacobson, N.: Structure and Representations of Jordan Algebras. American Mathematical Society Colloquium Publications, vol. 39. American Mathematical Society, Providence (1968)

    Google Scholar 

  26. Kiselev, A.V.: Associative homotopy Lie algebras and Wronskians. J. Math. Sci. 141(1), 1016–1030 (2007)

    MathSciNet  Google Scholar 

  27. Kiselev, A.V.: On homotopy Lie algebra structures in the rings of differential operators. Note di Mat. 23(1), 83–110 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Koepf, W.: Hypergeometric Summation. Advanced Lectures in Mathematics. Vieweg, Braunschweig (1998)

    Google Scholar 

  29. Kolesnikov, P.S.: Varieties of dialgebras and conformal algebras. Sib. Math. J. 49(2), 257–272 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Kolesnikov, P.S., Voronin, V.Yu.: On special identities for dialgebras. Linear Multilinear Algebra 61(3), 377–391 (2013)

  31. Lada, T., Markl, M.: Strongly homotopy Lie algebras. Commun. Algebra 23(6), 2147–2161 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Lazaroiu, C.I., McNamee, D., Saemann, Chr., Zejak, A.: Strong homotopy Lie algebras, generalized Nahm equations and multiple M2-branes (2009). arXiv:0901.3905

  33. Lister, W.G.: Ternary rings. Trans. Amer. Math. Soc. 154, 37–55 (1971)

    MathSciNet  MATH  Google Scholar 

  34. Loday, J.-L., Vallette, B.: Algebraic Operads. Grundlehren der Mathematischen Wissenschaften, vol. 346. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  35. Markl, M., Remm, E.: (Non-)Koszulness of operads for \(n\)-ary algebras, galgalim and other curiosities. J. Homotopy Relat. Struct. 10(4), 939–969 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Milnor, J., Stasheff, J.D.: Characteristic Classes. Annals of Mathematics Studies, vol. 76. Princeton University Press, Princeton (1974)

    Google Scholar 

  37. Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A=B\). A K Peters / CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  38. Poincaré, H.: Sur les équations linéaires aux différentielles ordinaires et aux différences finies. Am. J. Math. 7(3), 203–258 (1885)

    MathSciNet  MATH  Google Scholar 

  39. Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lecture Series, vol. 37. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  40. Pozhidaev, A.P.: 0-dialgebras with bar-unity, Rota-Baxter and 3-Leibniz algebras. In: Giambruno, A., Milies, C.P., Sehgal, S.K. (eds.) Groups, Rings and Group Rings. Contemporary Mathematics, vol.499, pp. 245–256 (2009)

  41. Schreiber, U.: L-infinity-algebra. http://ncatlab.org/nlab/show/L-infinity-algebra. Accessed 7 Apr 2019

  42. Schreiber, U.: \(n\)-Lie algebra. http://ncatlab.org/nlab/show/n-Lie+algebra. Accessed 7 Apr 2019

  43. Stasheff, J.: L-infinity and A-infinity structures: then and now. Higher Struct. 3(1), 1–35 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  45. Vallette, B.: Manin products, Koszul duality, Loday algebras and Deligne conjecture. J. Reine Angew. Math. 620, 105–164 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Vinogradov, A.M., Vinogradov, M.M.: Graded multiple analogs of Lie algebras. Acta Appl. Math. 72(1–2), 183–197 (2002)

    MathSciNet  MATH  Google Scholar 

  47. Wachs, M.L.: Poset topology. In: Miller, E., Reiner, V., Sturmfels, B. (eds.) Geometric Combinatorics. IAS/Park City Mathematics Series, vol. 13, pp. 497–615. American Mathematical Society, Providence (2007)

    Google Scholar 

Download references

Acknowledgements

Some of the key results of this paper were obtained in CINVESTAV (Mexico City); the first author and the second author wish to thank that institution for the excellent working conditions. The authors are also grateful to Murray Bremner for his interest in our work (he communicated to us [4] that arrived at the same definition of Veronese powers independently, when trying to define what an n-ary algebra over an operad is), to Eric Hoffbeck for comments on the first draft of the paper, and to Jim Stasheff for useful remarks on different definitions of n-ary Lie algebras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Markl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Eduard Čech Institute [P201/12/G028 to M.M.] and by a Grant GA ČR [18-07776S to M.M.]. The final revision was moreover supported by Præmium Academiae of Martin Markl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotsenko, V., Markl, M. & Remm, E. Veronese powers of operads and pure homotopy algebras. European Journal of Mathematics 6, 829–863 (2020). https://doi.org/10.1007/s40879-019-00351-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-019-00351-6

Keywords

Mathematics Subject Classification

Navigation