Skip to main content
Log in

Complexity of distances: Reductions of distances between metric and Banach spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that all the standard distances from metric geometry and functional analysis, such as Gromov—Hausdorff distance, Banach—Mazur distance, Kadets distance, Lipschitz distance, Net distance, and Hausdorff—Lipschitz distance have all the same complexity and are reducible to each other in a precisely defined way.

This is done in terms of descriptive set theory and is a part of a larger research program initiated by the authors in [8]. The paper is however targeted also to specialists in metric geometry and geometry of Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Argerami, S. Coskey, M. Kalantar, M. Kennedy, M. Lupini and M. Sabok, The classification problem for finitely generated operator systems and spaces, https://arxiv.org/abs/1411.0512.

  2. I. Ben Yaacov, M. Doucha, A. Nies and T. Tsankov, Metric Scott analysis, Advances in Mathematics 318 (2017), 46–87.

    Article  MathSciNet  Google Scholar 

  3. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, Vol. 48, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  4. B. Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fundamenta Mathematicae 172 (2002), 117–152.

    Article  MathSciNet  Google Scholar 

  5. D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  6. J. D. Clemens, Isometry of Polish metric spaces, Annals of Pure and Applied Logic 163 (2012), 1196–1209.

    Article  MathSciNet  Google Scholar 

  7. M. Cúth, M. Doležal, M. Doucha and O. Kurka, Polish spaces of Banach spaces, https://arxiv.org/abs/1912.03994.

  8. M. Cúth, M. Doucha and O. Kurka, Complexity of distances: Theory of generalized analytic equivalence relations, https://arxiv.org/abs/1804.11164.

  9. P. Dodos, Banach Spaces and Descriptive Set Theory: Selected Topics, Lecture Notes in Mathematics, Vol. 1993, Springer, Berlin, 2010.

    Book  Google Scholar 

  10. Y. Dutrieux and N. J. Kalton, Perturbations of isometries between C(K)-spaces, Studia Mathematica 166 (2005), 181–197.

    Article  MathSciNet  Google Scholar 

  11. M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011.

    Book  Google Scholar 

  12. V. Ferenczi, A. Louveau and C. Rosendal, The complexity of classifying separable Banach spaces up to isomorphism, Journal of the London Mathematical Society 79 (2009), 323–345.

    Article  MathSciNet  Google Scholar 

  13. E. M. Galego and A. L. Porto da Silva, An optimal nonlinear extension of Banach-Stone theorem, Journal of Functional Analysis 271 (2016), 2166–2176.

    Article  MathSciNet  Google Scholar 

  14. S. Gao, Invariant Descriptive Set Theory, Pure and Applied Mathematics (Boca Raton), Vol. 293, CRC Press, Boca Raton, FL, 2009.

    MATH  Google Scholar 

  15. G. Godefroy, N. Kalton and G. Lancien, Subspaces of co(N) and Lipschitz isomorphisms, Geometric and Functional Analysis 10 (2000), 798–820.

    Article  MathSciNet  Google Scholar 

  16. S. Grivaux, Construction of operators with prescribed behaviour, Archiv der Mathematik 81 (2003), 291–299.

    Article  MathSciNet  Google Scholar 

  17. M. Gromov, Metric Structures for Riemannian and No-Riemannian Spaces, Modern Birkhauser Classics, Birkhäuser, Boston, MA, 2007.

    MATH  Google Scholar 

  18. N. J. Kalton and M. I. Ostrovskii, Distances between Banach spaces, Forum Mathematicum 11 (1999), 17–48.

    Article  MathSciNet  Google Scholar 

  19. A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer, New York, 1995.

    Book  Google Scholar 

  20. O. Kurka, Tsirelson-like spaces and complexity of classes of Banach spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas 112 (2018), 1101–1123.

    Article  MathSciNet  Google Scholar 

  21. G. Lancien, A short course on nonlinear geometry of Banach spaces, in Topics in Functional and Harmonic Analysis, Theta Series in Advanced Mathematics, Vol. 14, Theta, Bucharest, 2013, pp. 77–101.

    Google Scholar 

  22. R. Matveev and J. W. Portegies, Intrinsic flat and Gromov—Hausdorff convergence of manifolds with Ricci curvature bounded below, Journal of Geometric Analysis 27 (2017), 1855–1873.

    Article  MathSciNet  Google Scholar 

  23. J. Melleray, Computing the complexity of the relation of isometry between separable Banach spaces, Mathematical Logic Quarterly 53 (2007), 128–131.

    Article  MathSciNet  Google Scholar 

  24. P. W. Nowak and G. Yu, Large Scale Geometry, EMS Textbooks in Mathematics, European Mathematical Society, Zürich, 2012.

    Google Scholar 

  25. M. I. Ostrovskiĭ, Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry, Quaestiones Mathematicae 17 (1994), 259–319.

    Article  MathSciNet  Google Scholar 

  26. M. I. Ostrovskii, Paths between Banach spaces, Glasgow Mathematical Journal 44 (2002), 261–273.

    Article  MathSciNet  Google Scholar 

  27. M. I. Ostrovskii, Metric Embeddings, De Gruyter Studies in Mathematics, Vol. 49, De Gruyter, Berlin, 2013.

    Book  Google Scholar 

  28. M. Sabok, Completeness of the isomorphism problem for separable C*-algebras, Inventiones Mathematicae 204 (2016), 833–868.

    Article  MathSciNet  Google Scholar 

  29. C. Sormani and S. Wenger, The intrinsic flat distance between Riemannian manifolds and other integral current spaces, Journal of Differential Geometry 87 (2011), 117–199.

    Article  MathSciNet  Google Scholar 

  30. A. M. Vershik, The universal Uryson space, Gromov’s metric triples, and random metrics on the series of natural numbers, Uspekhi Matematicheskikh Nauk 53 (1998), 57–64.

    Article  MathSciNet  Google Scholar 

  31. J. Zielinski, The complexity of the homeomorphism relation between compact metric spaces, Advances in Mathematics 291 (2016), 635–645.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. Cúth was supported by Charles University Research program No. UNCE/SCI/023 and by the Research grant GAČR 17-04197Y. M. Doucha was supported by the GAČR project EXPRO 20-31529X, and RVO: 67985840. O. Kurka was supported by the Research grant GAČR 17-04197Y and by RVO: 67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Cúth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cúth, M., Doucha, M. & Kurka, O. Complexity of distances: Reductions of distances between metric and Banach spaces. Isr. J. Math. 248, 383–439 (2022). https://doi.org/10.1007/s11856-022-2305-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2305-7

Navigation