Skip to main content

Advertisement

Log in

Macroinvertebrate assemblages in acidified mountain lake inflows differs from lake outflows: the influence of lakes

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

This synoptic study of inflows and outflows of eight atmospherically acidified glacial lakes in the Bohemian Forest, the Czech Republic and Germany, investigated how the presence of lakes on headwater streams changes the water chemistry and concurrently macroinvertebrate assemblages. The extent of changes in water chemistry was assessed in relation to lake morphometry (max. depth, lake volume and area, water residence time (WRT)). The inflows exhibited a wide pH gradient, from 3.9–6.3, while pH of outflows ranged from 4.6–5.9. Lakes generally increased the temperature, reduced the acidity of outflows and were net sinks for dissolved nutrients but sources of their particulate forms and N-NH4+. However, we only found significant relationships between N-NH4+ and WRT; other relationships between differences in physico-chemical parameters and lake morphometry were nonsignificant. Comparisons of macroinvertebrate groups indicate that the numbers of Plecoptera, Trichoptera, and Diptera taxa were significantly higher in inflows than in outflows. Plecoptera dominated in inflows whereas the abundance of Ephemeroptera was significantly higher in outflows. The higher abundance of Diptera in outflows was due to the family Simuliidae, probably benefiting from the supply of food (seston) from lakes. We found a significant positive relationship between pH and the number of macroinvertebrate taxa in inflows, but not in outflows. This lack of significancy was most probably caused by the low number of sites (7), the narrow pH range, and several factors that influenced outflows: higher temperature, altered water chemistry, the input of lake taxa, and higher content of food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All datasets, our manuscript is based on, are available in the caption Supplementary data.

References

  • Angelier E (2003) Ecology of streams and rivers. Science Publishers Inc., Enfield

    Google Scholar 

  • Belluci CJ, Becker M, Beauchene M (2011) Effects on small dams on aquatic biota in two Connecticut streams. Connecticut Department of Energy and Environmental Protection, Hartford

    Google Scholar 

  • Beneš F, Horecký J, Senoo T, Kamasová L, Lamačová A, Tátosová J, Hardekopf DW, Stuchlík E (2017) Evidence for responses in water chemistry and macroinvertebrates in a strongly acidified mountain stream. Biologia 72:1049–1058. https://doi.org/10.1515/biolog-2017-0121

    Article  CAS  Google Scholar 

  • Boggero A, Lencioni V (2006) Macroinvertebrates assemblages of high altitude lakes, inlets and outlets in the southern Alps. Arch Hydrobiol 165:37–61. https://doi.org/10.1127/0003-9136/2006/0165-0037

    Article  Google Scholar 

  • Bojková J, Seifert L, Petruželová J, Šorfová V, Syrovátka V, Sroka P, Polášková V (2018) Species richness and composition of macroinvertebrate assemblage in the Bavarian Forest National Park: Preliminary results of the stream monitoring. Silva Gabreta 24:171–211

    Google Scholar 

  • Braukmann U (2001) Stream acidification in South Germany - chemical and biological assessment methods and trends. Aquat Ecol 35:207–232. https://doi.org/10.1023/A:1011452014258

    Article  CAS  Google Scholar 

  • Braukmann U, Biss R (2004) Conceptual study – An improved method to assess acidification in German streams by using benthic macroinvertebrates. Limnologica 34:433–450. https://doi.org/10.1016/S0075-9511(04)80011-2

    Article  CAS  Google Scholar 

  • Cosby BJ, Wright RF, Hornberger GM, Galloway JN (1985) Modelling the effects of acid deposition: estimation of long term water quality responses in a small forested catchment. Water Resour Res 21:1591–1601. https://doi.org/10.5194/hess-7-494-2003

    Article  CAS  Google Scholar 

  • Dougan WK, Wilson AL (1974) The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst 99:413–430. https://doi.org/10.1039/AN9749900413

    Article  CAS  PubMed  Google Scholar 

  • Driscoll CT (1984) A procedure for the fractionation of aqueous aluminium in dilute waters. Int J Environ Anal Chem 16:93–104. https://doi.org/10.1080/03067318408076957

    Article  Google Scholar 

  • Evans CD, Cullen JM, Alewell C, Marchetto A, Moldan F, Kopáček J, Prechetel A, Rogora M, Veselý J, Wright RF (2001) Recovery from acidification in European surface waters. Hydrol Earth System Sci 5:283–297. https://doi.org/10.5194/hess-5-283-2001

    Article  Google Scholar 

  • Frost SA, Huni A, Kershaw WE (1971) Evaluation of kicking technique for sampling stream bottom fauna. Can J Zool 49:167–173. https://doi.org/10.1139/z71-026

    Article  Google Scholar 

  • Garmo Ø, Skjelkvåle BL, de Wit HA et al (2014) Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut 225:1880. https://doi.org/10.1007/s11270-014-1880-6

    Article  CAS  Google Scholar 

  • Guérold F, Vein D, Jacquemin G, Pihan JC (1995) The macroinvertebrate communities of streams draining a small granitic catchment exposed to acidic precipitations (Vosges Mountains, northeastern France). Hydrobiol 300(301):141–148. https://doi.org/10.1007/BF00024456

    Article  Google Scholar 

  • Guérold F, Boudot J-P, Jacquemin DV, Merlet D, Rouiller J (2000) Macroinvertebrate community loss as a result of headwater stream acidification in the Vosgue Mountains (N-E France). Biodivers Cons 9:767–783. https://doi.org/10.1023/A:1008994122865

    Article  Google Scholar 

  • Hamerlík L, Šporka F, Zaťovičová Z (2006) Macroinvertebrates of inlets and outlets of tha Tatra Mountain lakes (Slovakia). Biologia 61:S167–S179. https://doi.org/10.2478/s11756-006-0128-3

    Article  Google Scholar 

  • Hardekopf DW, Horecký J, Kopáček J, Stuchlík E (2008) Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic). Hydrol Earth System Sci 12:479–490. https://doi.org/10.5194/hess-12-479-2008

    Article  CAS  Google Scholar 

  • Horecký J, Stuchlík E, Chvojka P, Hardekopf DW, Mihaljevič M, Špaček J (2006) Macroinvertebrate community and chemistry of the most atmospherically acidified streams in the Czech Republic. Water Air Soil Pollut 173:261–272. https://doi.org/10.1007/s11270-005-9071-0

    Article  CAS  Google Scholar 

  • Horecký J, Rucki J, Krám P, Křeček J, Bitušík P, Špaček J, Stuchlík E (2013) Differences in benthic macroinvertebrate structure of headwater streams with extreme hydrochemistry. Biologia 68:303–313. https://doi.org/10.2478/s11756-013-0156-8

    Article  CAS  Google Scholar 

  • Horecký J (2003) Zhodnocení vlivu kyselé atmosférické depozice na chemismus a oživení horských potoků v ČR (Evaluation of the influence of acid atmospheric deposition on the chemistry and recovery of mountain streams in the Czech Republic). Dissertation, Charles University, Prague. [in Czech]

  • Hruška J, Krám P (2003) Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhův Bor, Czech Republic). Hydrol Earth Syst Sci 7:525–539. https://doi.org/10.5194/hess-7-525-2003

    Article  Google Scholar 

  • Jones NE (2010) Incorporating lakes within the river discontinuum: longitudinal changes in ecological characteristics in stream-lake networks. Can J Fish Aquatic Sci 67:1350–1362. https://doi.org/10.1139/F10-069

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  • Katano I, Negishi JN, Minagawa T, Doi H, Kawaguchi Y, Kayaba Y (2009) Longitudinal macroinvertebrate organization over contrasting discontinuities: effect of a dam and a tributary. Freshw Sci 28:331–351. https://doi.org/10.1899/08-010.1

    Article  Google Scholar 

  • Kelly CA, Rudd JWM, Hesslein RH, Schindler DW, Dillon PJ, Driscoll CT, Gherini SA, Hecky RE (1987) Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochem 3:129–140. https://doi.org/10.1007/BF02185189

    Article  CAS  Google Scholar 

  • Kling GW, Kipphut GW, Miller MM, O´Brien WJ, (2000) Integration of lakes and streams in a landscape perspective: The importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43:477–497. https://doi.org/10.1046/j.1365-2427.2000.00515.x

    Article  Google Scholar 

  • Ko NT, Suter P, Conallin J, Rutten M, Bogaard T (2020) Aquatic macroinvertebrate community changes downstream of the hydropower generating dams in Myanmar–potential negative impacts from increased power generation. Front Water 2:1–19. https://doi.org/10.3389/frwa.2020.573543

    Article  Google Scholar 

  • Kokavec I, Navara T, Beracko P, Derka T, Handanovičová I, Rúfusová A, Vráblová Z, Lánczos T, Illyová M, Šporka F (2017) Downstream effect of a pumped-storage hydropower plant on river habitat conditions and benthic life – a case study. Biologia 72:652–670. https://doi.org/10.1515/biolog-2017-0077

    Article  CAS  Google Scholar 

  • Kopáček J, Hejzlar J (1993) Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53:173–183. https://doi.org/10.1080/03067319308045987

    Article  Google Scholar 

  • Kopáček J, Hejzlar J, Stuchlík E, Fott J, Veselý J (1998) Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. Limnol Oceanogr 43:357–436. https://doi.org/10.4319/lo.1998.43.2.0357

    Article  Google Scholar 

  • Kopáček J, Hejzlar J, Mosello R (2000) Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Res 34:3598–3606. https://doi.org/10.1016/S0043-1354(00)00109-3

    Article  Google Scholar 

  • Kopáček J, Turek J, Hejzlar J (2011) Bulk deposition and throughfall fluxes of elements in the Bohemian Forest (central Europe) from 1998 to 2009. Boreal Env Res 16:495–508

    Google Scholar 

  • Kopáček J, Hejzlar J, Krám P, Oulehle F, Posch M (2016a) Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res 103:30–37. https://doi.org/10.1016/j.watres.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  • Kopáček J, Hejzlar J, Kaňa J, Porcal P, Turek J (2016b) The sensitivity of water chemistry to climate in a forested, nitrogen-saturated catchment recovering from acidification. Ecol Indic 63:196–208. https://doi.org/10.1016/j.ecolind.2015.12.014

    Article  CAS  Google Scholar 

  • Kopáček J, Kaňa J, Porcal P, Vrba J, Norton SA (2019) Effects of tree dieback on lake water acidity in the unmanaged catchment of Plešné Lake, Czech Republic. Limnol Oceanogr 64:1614–1626. https://doi.org/10.1002/lno.11139

    Article  CAS  Google Scholar 

  • Křeček J, Hořická Z (2006) Forest, air pollution and water quality: influencing health in the headwaters of Central Europe´s “Black Triangle.” Unasylva 224:46–49

    Google Scholar 

  • Křeček J, Palán L, Pažourková E, Stuchlík E (2019) Water-quality genesis in a mountain catchment affected by acidification and forestry practises. Freshw Sci 38:257–269. https://doi.org/10.1086/698533

    Article  Google Scholar 

  • Lorenzen CJ (1976) Ultraviolet radiation and phytoplankton photosynthesis. Limnol Oceanogr 24:1117–1120

  • Mackereth FJH, Heron J, Talling JF (1978) Water analysis: Some revised methods for limnologists. FBA Scientific publication no. 36. Titus Wilson & Sons Ltda, Kendal

    Google Scholar 

  • Maiolini B, Lencioni V, Boggero A, Thaler B, Lotter AF, Rossaro B (2006) Zoobenthic communities of inlets and outlets of high altitude Alpine lakes. Hydrobiol 562:217–229. https://doi.org/10.1007/s10750-005-1812-y

    Article  Google Scholar 

  • Majer V, Cosby BJ, Kopáček J, Veselý J (2003) Modelling reversibility of Central European mountain lakes from acidification: Part I - The Bohemian Forest. Hydrol Earth Syst Sci 7:494–509. https://doi.org/10.5194/hess-7-494-2003

    Article  CAS  Google Scholar 

  • Matěna J, Matěnová V, Blabolil P, Kopáček J, Peltanová J, Šorf M, Žaloudík J, Vrba J (2017) Recovery of brown trout populations in streams exposed to atmospheric acidification in the Bohemian Forest. Folia Zool 66:1–10. https://doi.org/10.25225/fozo.v66.i1.a2.2017

    Article  Google Scholar 

  • Nedbalová L, Vrba J, Fott J, Kohout L, Kopáček J, Macek M, Soldán T (2006) Biological recovery of the Bohemian Forest lakes from acidification. Biologia 61:S453–S466. https://doi.org/10.2478/s11756-007-0071-y

    Article  Google Scholar 

  • Oulehle F, Cosby BJ, Wright RF, Hruška J, Kopáček J, Krám P, Evans CD, Moldan F (2012) Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environ Pollut 165:158–166. https://doi.org/10.1016/j.envpol.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  • Pažourková E, Křeček J, Bitušík P, Chvojka P, Kamasová L, Senoo T, Špaček J, Stuchlík E (2021) Impacts of an extreme flood on the ecosystem of a headwater stream. J Limnol 80:1998. https://doi.org/10.4081/jlimnol.2021.1998

    Article  Google Scholar 

  • Petránek J (1993) Malá encyklopedie geologie (Small encyclopedia of geology). Jih, České Budějovice [in Czech]

  • Petrin Z, Englund G, Malmquist B (2008) Contrasting effects of anthropogenic and natural acidity in streams: a meta-analysis. Proc R Soc B 275:1143–1148. https://doi.org/10.1098/rspb.2008.0023

  • Raddum GG, Fjellheim A (2002) Species composition of freshwater invertebrates in relation to chemical and physical factors in high mountains in southwestern Norway. Water Air Soil Pollut 2:311–328. https://doi.org/10.1023/A:1020179330668

    Article  Google Scholar 

  • Raddum GG, Skjelkvåle BL (2001) Critical limit of acidifying compounds to invertebrates in different regions of Europe. Water Air Soil Pollut 130:825–830. https://doi.org/10.1023/A:1013818510106

    Article  Google Scholar 

  • Smith EM, Baldigob BP, Duffya BT, Georgeb SD, Dressera B (2019) Resilience of benthic macroinvertebrates to extreme floods in a Catskill Mountain river, New York, USA: Implications for water quality monitoring and assessment. Ecol Indic 104:107–115. https://doi.org/10.1016/j.ecolind.2019.04.057

  • Šobr M, Janský B (2016) The morphometric parameters of glacial lakes in the Bohemian Forest. Silva Gabreta 22:31–61

    Google Scholar 

  • Soldán T, Bojková J, Vrba J, Bitušík P, Chvojka P, Papáček M, Peltanová J, Sychra J, Tátosová J (2012) Aquatic insects of the Bohemian Forest glacial lakes: Diversity, long-term changes, and influence of acidification. Silva Gabreta 18:123–283

    Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: Chan VT (ed) Handbook of applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Švambera V (1939) Jezera na české straně Šumavy (Lakes on the Czech side of the Šumava Mountains). Sborník České společnosti zeměpisné 45:15–23 [in Czech]

    Google Scholar 

  • Svobodová J, Matěna J, Kopáček J, Poláková S, Vrba J (2012) Spatial and temporal changes of benthic macroinvertebrate assemblages in acidified streams in the Bohemian Forest (Czech Republic). Aquat Insects 34:1–16. https://doi.org/10.1080/01650424.2012.643048

    Article  Google Scholar 

  • Sweeney B, Bott TL, Jackson JK, Kaplan LA, Newbold D, Standley LJ, Hession WC, Horwitz RJ (2004) Stream deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci USA 101:14132–14137. https://doi.org/10.1073/pnas.0405895101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczęsny B (1998) Benthic macroinvertebrates in the acidified headstreams of the Vistula River. Studia Naturae 44:145–170

    Google Scholar 

  • Ungermanová L, Kolaříková K, Stuchlík E, Senoo T, Horecký J, Kopáček J, Chvojka P, Tátosová J, Bitušík P, Fjellheim A (2014) Littoral macroinvertebrates of acidified lakes in the Bohemian Forest. Biologia 69:1190–1201. https://doi.org/10.2478/s11756-014-0420-6

    Article  Google Scholar 

  • Velle G, Telford RJ, Curtis C, Eriksson L, Fjellheim A et al (2013) Biodiversity in freshwaters: temporal trends and response to water chemistry. ICP Waters report 114. NIVA, Oslo

    Google Scholar 

  • Veselý J (1994) Investigation of the nature of the Šumava lakes: a review. Časopis Národního muzea, Praha, Řada přírodovědná 163:103–120

    Google Scholar 

  • Veselý J, Majer V, Kopáček J, Norton SA (2003) Increasing temperature decreases aluminum concentrations in Central European lakes recovering from acidification. Limnol Oceanogr 48:2346–2354. https://doi.org/10.4319/lo.2003.48.6.2346

    Article  Google Scholar 

  • Vondrák J (2019) Sedimenty šumavských jezer a jejich využití v paleoenvironmentálním výzkumu (Sediments of Bohemian Forest lakes and their use in paleoenvironmental research). Ph.D. thesis. Charles University, Prague [in Czech with English summary]

  • Vrba J, Kopáček J, Fott J (2000) Long-term limnological research of the Bohemian Forest lakes and their recent status. Silva Gabreta 4:7–28

    Google Scholar 

  • Vrba J, Kopáček J, Fott J, Kohout L, Nedbalová L, Pražáková M, Soldán T, Schaumburg J (2003) Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Sci Total Env 310:73–85. https://doi.org/10.1016/s0048-9697(02)00624-1

    Article  CAS  Google Scholar 

  • Vrba J, Bojková J, Chvojka P, Fott J, Kopáček J, Macek M, Nedbalová L, Papáček M, Rádková V, Sacherová V, Soldán T, Šorf M (2016) Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. Freshw Biol 61:376–395. https://doi.org/10.1111/fwb.12714

    Article  Google Scholar 

  • Weilner C (1997) Die Eiszeitseen des Bayerischen Waldes (Glacial lakes of the Bavarian Forest). Cletus Weilner, Regen, p 284

    Google Scholar 

Download references

Acknowledgements

This manuscript was financially supported primarily by the project of the Czech Science Foundation (GAČR) (Austrian-Czech Lead Agency project—Austrian Science Fund FWF No. 19770/Czech Science Foundation No. 20-00892L) and by the Ministry of Culture of the Czech Republic (DKRVO 2019–2023/5.I.d, National Museum, 00023272). We wish to express our gratitude to Jindřiška Bojková, Martin Fikáček, Jiří Hájek, Miroslav Papáček, Jan Rucki, and Tomáš Soldán for their help in species identifications. The authors also wish to thank Jakub Horecký, David Hardekopf and Jaroslav Vrba for their contribution to this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study:

• material preparation: Evžen Stuchlík, Jolana Tátosová

• data collection: Takaaki Senoo, Lenka Kamasová, Evžen Stuchlík, Pavel Chvojka, Jolana Tátosová, Peter Bitušík

• chemical analysis: Jiří Kopáček, Evžen Stuchlík

• biological determination: Takaaki Senoo, Lenka Kamasová, Filip Beneš, Pavel Chvojka, Jan Špaček, Peter Bitušík

• data analysis: Kateřina Dočkalová, Daniel Vondrák, Evžen Stuchlík, Jiří Kopáček, Arne Fjellheim

The first draft of the manuscript was written by Kateřina Dočkalová, Evžen Stuchlík, and Takaaki Senoo, and all authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kateřina Dočkalová.

Ethics declarations

Competing interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1283 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dočkalová, K., Senoo, T., Vondrák, D. et al. Macroinvertebrate assemblages in acidified mountain lake inflows differs from lake outflows: the influence of lakes. Biologia 77, 2593–2607 (2022). https://doi.org/10.1007/s11756-022-01144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-022-01144-1

Keywords

Navigation