Skip to main content
Log in

Trees and Forests for Nonequilibrium Purposes: An Introduction to Graphical Representations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using local detailed balance we rewrite the Kirchhoff formula for stationary distributions of Markov jump processes in terms of a physically interpretable tree-ensemble. We use that arborification of path-space integration to derive a McLennan-tree characterization close to equilibrium, as well as to obtain response formula for the stationary distribution in the asymptotic regime of large driving. Graphical expressions of currents and of traffic are obtained, allowing the study of various asymptotic regimes. Finally, we present how the matrix-forest theorem gives a representation of quasi-potentials, as used e.g. for computing excess work and heat in nonequilibrium thermal physics. A variety of examples illustrate and explain the graph elements and constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Maes, C.: Response theory: a trajectory-based approach. Front. Phys. 8, 229 (2020). (Section Interdisciplinary Physics)

    Article  Google Scholar 

  2. Bergmann, P.G., Lebowitz, J.L.: New approach to nonequilibrium process. Phys. Rev. 99, 578–587 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lebowitz, J.L., Bergmann, P.G.: Irreversible Gibbsian ensembles. Ann. Phys. 1, 1–23 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Katz, S., Lebowitz, J.L., Spohn, H.: Stationary nonequilibrium states for stochastic lattice gas models of ionic superconductors. J. Stat. Phys. 34, 497–537 (1984)

    Article  ADS  Google Scholar 

  5. Katz, S., Lebowitz, J.L., Spohn, H.: Phase transitions in stationary non-equilibrium states of model lattice systems. Phys. Rev. B 28, 1655–1658 (1983)

    Article  ADS  Google Scholar 

  6. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. P07023 (2007)

  7. Maes, C., Netočný, K.: Time-reversal and entropy. J. Stat. Phys. 110, 269 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tasaki, H.: Two theorems that relate discrete stochastic processes to microscopic mechanics. arXiv:0706.1032v1 [cond-mat.stat-mech]

  9. Jia, Chen, Jiang, Da-Quan., Li, Youming: Detailed balance, local detailed balance, and global potential for stochastic chemical reaction networks. Adv. Appl. Prob. 53, 886–922 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maes, C.: Local detailed balance. SciPost Phys. Lect. Notes. (2021). https://doi.org/10.21468/SciPostPhysLectNotes.32

    Article  Google Scholar 

  11. Maes, C.: Frenesy: time-symmetric dynamical activity in nonequilibria. Phys. Rep. 850, 1–33 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Maes, C.: Non-Dissipative Effects in Nonequilibrium Systems. SpringerBriefs in Complexity, Springer, Cham (2018)

    Book  MATH  Google Scholar 

  13. Komatsu, T.S., Nakagawa, N.: An expression for stationary distribution in nonequilibrium steady states. Phys. Rev. Lett. 100, 030601 (2008)

    Article  ADS  Google Scholar 

  14. Maes, C., Netočný, K.: Heat bounds and the blowtorch theorem. Ann. Henri Poincarè 14(5), 1193–1202 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Aleandri, M., Colangeli, M., Gabrielli, D.: A combinatorial representation for the invariant measure of diffusion processes on metric graphs. ALEA. Lat. Am. J. Probab. Math. Stat. 18(2), 1773–1799 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khodabandehlou, F., Maes, I.: Drazin-Inverse and heat capacity for driven random walks on the ring. arXiv:2204.04974v2 [math.PR]

  17. Maes, C., Netočný, K., O’Kelly de Galway, W.: Low temperature behavior of nonequilibrium multilevel systems. J. Phys. A 47, 035002 (2014)

    Article  ADS  MATH  Google Scholar 

  18. In the present paper, we use the term quasi-potential for characterizing excess quantities, and pseudo-potential is used for effective potential describing static fluctuations. One better be aware however that other papers may use opposite or different terminology

  19. Anantharam, V., Tsoucas, P.: A proof of the Markov Chain tree theorem. Stat. Probab. Lett. 8, 189–192 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shubert, B.O.: A flow-graph formula for the stationary distribution of a Markov Chain. IEEE Trans. Syst. Man Cybern. 5, 565–566 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tutte, W.T.: Graph Theory. Addison Wesley, Reading, MA (1984)

    MATH  Google Scholar 

  22. Baerts, P., Basu, U., Maes, C., Safaverdi, S.: The frenetic origin of negative differential response. Phys. Rev. E 88, 052109 (2013)

    Article  ADS  Google Scholar 

  23. Landauer, R.: Inadequacy of entropy and entropy derivatives in characterizing the steady state. Phys. Rev. A 12(2), 636–638 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kotak, J.D., Barma, M.: Bias induced drift and trapping on random combs and the Bethe lattice: fluctuation regime and first order phase transitions. Physica A 97, 127311 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Demaerel, T., Maes, C.: Death and resurrection of a current by disorder, interaction or periodic driving. J. Stat. Phys. 173(1), 99–119 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Schnakenberg, J.: Network theory of behavior of master equation systems. Rev. Mod. Phys. 48, 571 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. McLennan, J.A., Jr.: Statistical mechanics of the steady state. Phys. Rev. 115, 1405–1409 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. McLennan, J.A., Jr.: Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, Englewood Cli, NJ (1989)

    Google Scholar 

  29. Maes, C., Netočný, K.: Rigorous meaning of McLennan ensembles. J. Math. Phys. 51, 015219 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Glansdorff, P., Nicolis, G., Prigogine, I.: The thermodynamic stability theory of non-equilibrium states. Proc. Natl. Acad. Sci. U.S.A. 71, 197–199 (1974)

    Article  ADS  Google Scholar 

  31. Oono, Y., Paniconi, M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Komatsu, T.S., Nakagawa, N., Sasa, S.I., Tasaki, H.: Steady state thermodynamics for heat conduction—microscopic derivation. Phys. Rev. Lett. 100, 230602 (2008)

    Article  ADS  Google Scholar 

  33. Komatsu, T.S., Nakagawa, N., Sasa, S.I., Tasaki, H.: Steady state thermodynamics for heat conduction—microscopic derivation. J. Stat. Phys. 134, 401 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Boksenbojm, E., Maes, C., Netočný, K., Pešek, J.: Thermal response in driven diffusive systems. Europhys. Lett. 96, 40001 (2011)

    Article  ADS  Google Scholar 

  35. Khodabandehlou, F., Krekels, S., Maes, I.: Exact computation of heat capacities for active particles on a graph. arXiv:2207.11070v1 [cond-mat.stat-mech]

  36. Dolai, P., Maes, C., Netočný, K.: Calorimetry for active systems. arXiv:2208.01583v1 [cond-mat.stat-mech]

  37. Khodabandehlou, F., Maes, C., Netočný, K.: A Nernst heat theorem for nonequilibrium jump processes. arXiv:2207.10313v1 [cond-mat.stat-mech]

  38. Chebotarev, P., Agaev, R.: Forest matrices around the Laplacian matrix. Linear Algebra Appl. 356, 253–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chebotarev, P., Shamis, E.: Matrix-Forest Theorems. (2006). arXiv:0602575 [math]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Khodabandehlou.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Shin-ichi Sasa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: More on Deriving the McLennan Formula

The first point is that by expanding w(x) up to linear order in \(\varepsilon \),

$$\begin{aligned} \dfrac{\rho _{\varepsilon }^s(x)}{\rho ^s_0(x)}=1+\frac{\varepsilon }{2} \left( \dfrac{\sum _{{\mathcal {T}}}\omega _{0}({\mathcal {T}}_x) S^{1}({\mathcal {T}}_x)}{w_0(x)}-\dfrac{\sum _y\sum _{{\mathcal {T}}} \omega _{0}({\mathcal {T}}_y)S^{1}({\mathcal {T}}_y)}{\sum _y w_0(y)}\right) + O(\varepsilon ^2) \end{aligned}$$
(A.1)

and using  2.5,

$$\begin{aligned} \dfrac{\sum _y\sum _{{\mathcal {T}}}\omega _{0}({\mathcal {T}}_y) S^{1}({\mathcal {T}}_y)}{\sum _y w_0(y)}&=\dfrac{\sum _y\sum _{{\mathcal {T}}} \frac{k_{\mathrm{eq}}(x,y)}{k_{\mathrm{eq}}(y,x)}\omega _{0}({\mathcal {T}}_x) S^1({\mathcal {T}}_x)}{\sum _y \frac{k_{\mathrm{eq}}(x,y)}{k_{\mathrm{eq}}(y,x)}w_0(x)} +2\dfrac{\sum _y\sum _{{\mathcal {T}}}\omega _{0}({\mathcal {T}}_y) S^1_{{\mathcal {T}}}(y\rightarrow x)}{W_0}\\&=\dfrac{\sum _{{\mathcal {T}}}\omega _{0}({\mathcal {T}}_x) S^1({\mathcal {T}}_x)}{w_0(x)} +2\sum _y\frac{w_0(y)}{W_0} \sum _{{\mathcal {T}}}\dfrac{\omega _{0}({\mathcal {T}}_y) S^1_{{\mathcal {T}}}(y\rightarrow x)}{w_0(y)} \end{aligned}$$

We now get

$$\begin{aligned} L_{\mathrm{eq}}\left( \frac{\rho ^s_\varepsilon }{\rho ^s_0}-1 \right) =\varepsilon \,\left( \sum _z k_{\mathrm{eq}}(x,z)\dfrac{\sum _{{\mathcal {T}}} \omega _{\mathrm{eq}}({\mathcal {T}}_{x})S^1_{{\mathcal {T}}} (x\rightarrow z))}{w_{\mathrm{eq}}(x)}\right) \end{aligned}$$

for the action of the equilibrium backward generator \(L_{\mathrm{eq}}\).

Appendix B: Proof of the Current Formulas

We need two lemmas.

Lemma B.1

Let \({\mathcal {T}}^G\) as a set of all spanning trees in graph \( {\mathcal {G}}\) which is a loop and hairs,and \({\mathcal {T}}^{\ell }\) as a set of all spanning trees on the loop \(\ell \). Then for every vertex x on the loop

$$\begin{aligned} \forall \tau ^G\in {\mathcal {T}}^G; \quad \exists ! \tau ^{\ell } \in {\mathcal {T}}^{\ell } ; \quad w(\tau ^G_x)=w(\tau ^{\ell }_x)W(H_{\ell }) \end{aligned}$$

Where \(\tau ^G_x\) is a spanning tree on the graph \({\mathcal {G}}\) towards x, \(\tau ^{\ell }_x\) is a spanning tree in the loop \(\ell \) towards x and \(W(H_{\ell })\)is the weight of all hairs towards the loop.

The point of that lemma is that the weights of spanning trees (toward x located on the loop) have a common term W(H) which does not depend on x.

Proof

Let \(\tau ^G\) be a spanning tree in the graph \({\mathcal {G}}\). It contains all vertices of \({\mathcal {G}}\), on hairs and loop. The hairs themselves are trees, so that the set of edges of \(\tau ^G\) includes all edges on the hairs E(H) and

$$\begin{aligned} E(\tau ^{\ell })=E(\tau ^G)\setminus E(H) \end{aligned}$$

with, for every \(x\in {\mathcal {V}}(\ell )\),

$$\begin{aligned} w(\tau _x^{\ell })=\dfrac{w(\tau _x ^G)}{W(H)} \end{aligned}$$

\(\square \)

Lemma B.2

For every x and \(y\in {\mathcal {V}}(\ell )\),

$$\begin{aligned} \sum _{\tau ^{\ell }}\left( w(\tau ^{\ell }_x)k(x,y)-w(\tau ^{\ell }_y)k(y,x)\right) =w(\ell ^{x\rightarrow y})-w(\ell ^{y\rightarrow x}) \end{aligned}$$

Proof

Let \({\mathcal {T}}^{\ell }_x\) be the set of all spanning trees on the loop \(\ell \) toward x. \({\mathcal {T}}^{\ell }_x = A_1 \cup A_2\) can be split into two subsets

$$\begin{aligned} \quad A_1:=\{\tau ^{\ell } _x; (y,x)\in \tau ^{\ell } _x\}, \qquad A_2:=\{\tau ^{\ell }_x; (y,x)\notin \tau ^{\ell } _x\} \end{aligned}$$

where \(\tau ^{\ell }_x\in {\mathcal {T}}^{\ell }_x \). Similarly, \({\mathcal {T}}^{\ell }_y \) is the set of all spanning trees toward y on the loop and

$$\begin{aligned} {\mathcal {T}}^{\ell }_y = B_1 \cup B_2; \quad B_1:=\{\tau ^{\ell } _y; (x,y)\in \tau ^{\ell } _y\}; \quad B_2:=\{\tau ^{\ell }_y; (x,y)\notin \tau ^{\ell } _y\} \end{aligned}$$

\(\tau _x\) is a tree towards x so it does not have the edge (xy) which is leaving the vertex x. \(\tau _y\) also does not have the edge (yx). So then

$$\begin{aligned} \forall \tau ^{\ell }_x \in A_1 \quad \tau ^{\ell }_x\setminus (y,x) \cup (x,y)\in B_1 \end{aligned}$$

so that

$$\begin{aligned} \exists \tau ^{\ell }_y\in B_1; \quad \tau ^{\ell }_y =\tau ^{\ell }_x\setminus (y,x) \cup (x,y) \end{aligned}$$

In other words

$$\begin{aligned} w(\tau ^{\ell }_x\setminus (y,x) \cup (x,y))=w(\tau ^{\ell }_x) \times \frac{k(x,y)}{k(y,x)}=w(\tau ^{\ell }_y) \end{aligned}$$

and

$$\begin{aligned} \forall \tau ^{\ell }_y \in B_1 \quad \tau ^{\ell }_y\setminus (x,y) \cup (y,x)\in A_1 \end{aligned}$$

so that

$$\begin{aligned} \exists \tau ^{\ell }_x\in A_1; \quad \tau ^{\ell }_x =\tau ^{\ell }_y\setminus (x,y) \cup (y,x) \end{aligned}$$

which means

$$\begin{aligned} w(\tau ^{\ell }_y\setminus (x,y) \cup (y,x))=w(\tau ^{\ell }_y) \times \frac{k(y,x)}{k(x,y)}=w(\tau ^{\ell }_x) \end{aligned}$$

Hence

$$\begin{aligned} \sum _{\tau \in A_1}w(\tau _x)k(x,y)=\sum _{\tau \in B_1} w(\tau _y)k(y,x) \end{aligned}$$
(B.1)

On the other hand

$$\begin{aligned}&\forall \tau ^{\ell }_x \in A_2 \quad \tau ^{\ell }_x\cup (x,y)= \ell ^{x\rightarrow y}\\&\forall \tau ^{\ell }_y \in B_2 \quad \tau ^{\ell }_y\cup (y,x)= \ell ^{y\rightarrow x} \end{aligned}$$

so then

$$\begin{aligned} w(A_2)k(x,y)=w(\ell ^{x\rightarrow y}); \quad w(B_2)k(y,x) =w(\ell ^{y\rightarrow x}) \end{aligned}$$
(B.2)

Now for every x and y on the loop

$$\begin{aligned} \sum _{\tau ^{\ell }}\left( w(\tau ^{\ell }_x)k(x,y)-w(\tau ^{\ell }_y)k(y,x)\right)&= \sum _{\tau ^{\ell }}w(\tau ^{\ell }_x)k(x,y)-\sum _{\tau ^{\ell }}w(\tau ^{\ell }_y)k(y,x)\\&=\left( \sum _{\tau ^{\ell }\in A_1}w(\tau ^{\ell }_x)k(x,y)-\sum _{\tau ^{\ell }\in B_1} w(\tau ^{\ell }_y)k(y,x)\right) \\&\quad +\left( \sum _{\tau ^{\ell }\in A_2}w(\tau ^{\ell }_x)k(x,y) -\sum _{\tau ^{\ell }\in B_2}w(\tau ^{\ell }_y)k(y,x)\right) \\&=w(\ell ^{x\rightarrow y})-w(\ell ^{y\rightarrow x}) \end{aligned}$$

Where in the second line we used B.1 and in the last line we used B.2. \(\square \)

Next we prove formula 4.3.

Proof

Consider on the graph \( {\mathcal {G}}\) for every x and y on the loop

$$\begin{aligned} j(x,y)&=\rho ^s(x)k(x,y)-\rho ^s(y)k(y,x)\\&=\frac{w(x)}{W}k(x,y) -\frac{w(y)}{W}k(y,x) \end{aligned}$$

where

$$\begin{aligned} w(x)=\sum _{\tau ^G}\prod _{(z,z')\in \tau ^G_x}k(z,z')=\sum _{\tau ^G}w(\tau ^G_x) \end{aligned}$$

From Lemma B.1

$$\begin{aligned} w(x)= W(H)\sum _{\tau ^{\ell }}w(\tau ^{\ell }_x) \end{aligned}$$

In the same way

$$\begin{aligned} w(y)= W(H)\sum _{\tau ^{\ell }}w(\tau ^{\ell }_y) \end{aligned}$$

so then

$$\begin{aligned} j(x,y)&=\frac{W(H)}{W}\sum _{\tau ^{\ell }}\left( w(\tau ^{\ell }_x) k(x,y)-w(\tau ^{\ell }_y)k(y,x)\right) \end{aligned}$$

From the Lemma B.2 the relation (4.3) has been proved. \(\square \)

We need another lemma to prove the general formula (4.7).

Lemma B.3

Consider a spanning tree \({\mathcal {T}}\) in the connected graph \({\mathcal {G}}\). If the edge \(\{x,y\}\) is in the graph but is not in the spanning tree, then by adding the edge \(\{x,y\}\) to the spanning tree one loop is created.

Proof

There is a path between x and y in the spanning tree \({\mathcal {T}}\). The edge \(\{x,y\}\) is a second path between vertices x and y. If we have more than one path between two vertices in a graph then we have a loop.

Imagine a general connected graph \({\mathcal {G}}\) in which the edge \(\{x,y\}\) belongs to more than one loop. Corresponding to the edge \(\{x,y\}\), the set of all spanning trees \({\mathcal {T}} ^{G}\) can be split into two sets. The set denoted by \(T^{xy}\) is a set of trees including the edge \(\{x,y\}\), while the set denoted by \(T^{c}\) is not including the edge \(\{x,y\}\). In (B.1) it is shown that

$$\begin{aligned} \sum _{{\mathcal {T}}\in T^{xy}} \big (w({\mathcal {T}}_x)k(x,y) -w({\mathcal {T}}_y)k(y,x)\big )=0 \end{aligned}$$

Notice that in the lemma we considered all spanning trees on a loop but the result of (B.1) is the same for every spanning tree.

We focus on the set which does not include the edge \(\{x,y\}\). By adding the edge \(\{x,y\}\) to the set \(T^{c}\), a loop including this edge is created (Lemma B.3). For every tree of \(T^{c}\), by adding this edge, a loop with a structure of hairs appears. In other words,

$$\begin{aligned} w(x)k(x,y)=\sum _{{\mathcal {T}}\in T^{c}}w({\mathcal {T}}_x)k(x,y) =\sum _{\ell _{xy}}\sum _{H_{\ell _{xy}}}w(\ell _{xy})w(H_{\ell _{xy}}) \end{aligned}$$

where \(\ell _{xy}\) is a loop in the graph \({\mathcal {G}}\) including the edge \(\{x,y\}\) and \(H_{\ell _{xy}}\) is one possible structure of hairs connected to the loop \(\ell _{xy}\). From here and the relation (4.3), the general formula (4.7) is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabandehlou, F., Maes, C. & Netočný, K. Trees and Forests for Nonequilibrium Purposes: An Introduction to Graphical Representations. J Stat Phys 189, 41 (2022). https://doi.org/10.1007/s10955-022-03003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-03003-4

Keywords

Navigation