Skip to main content
Log in

Statistical Solutions to the Barotropic Navier–Stokes System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a new concept of statistical solution in the framework of weak solutions to the barotropic Navier–Stokes system with inhomogeneous boundary conditions. Statistical solution is a family \(\{ M_t \}_{t \ge 0}\) of Markov operators on the set of probability measures \(\mathfrak {P}[\mathcal {D}]\) on the data space \(\mathcal {D}\) containing the initial data \([\varrho _0, \mathbf{m}_0]\) and the boundary data \(\mathbf{d}_B\).

  • \(\{ M_t \}_{t \ge 0}\) possesses a.a. semigroup property,

    $$\begin{aligned} M_{t + s}(\nu ) = M_t \circ M_s(\nu ) \ \text{ for } \text{ any }\ t \ge 0, \ \text{ a.a. }\ s \ge 0, \ \text{ and } \text{ any }\ \nu \in \mathfrak {P}[\mathcal {D}]. \end{aligned}$$
  • \(\{ M_t \}_{t \ge 0}\) is deterministic when restricted to deterministic data, specifically

    $$\begin{aligned} M_t( \delta _{[\varrho _0, \mathbf{m}_0, \mathbf{d}_B]}) = \delta _{[\varrho (t, \cdot ), \mathbf{m}(t, \cdot ), \mathbf{d}_B]},\ t \ge 0, \end{aligned}$$

    where \([\varrho , \mathbf{m}]\) is a finite energy weak solution of the Navier–Stokes system corresponding to the data \([\varrho _0, \mathbf{m}_0, \mathbf{d}_B] \in \mathcal {D}\).

  • \(M_t: \mathfrak {P}[\mathcal {D}] \rightarrow \mathfrak {P}[\mathcal {D}]\) is continuous in a suitable Bregman–Wasserstein metric at measures supported by the data giving rise to regular solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbatiello, A., Feireisl, E., Novotný, A.: Generalized solutions to models of compressible viscous fluids. Archive Preprint Series, arxiv preprint No. arxiv:1912.12896 (2019)

  2. Ambrosio, L., Dal Maso, G.: A general chain rule for distributional derivatives. Proc. Am. Math. Soc. 108(3), 691–702 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basarić, D.: Semiflow selection for the compressible Navier-Stokes system. Arxive Preprint Series, arXiv:1908.11695 (2019)

  4. Biswas, A., Foias, C., Mondaini, C.F., Titi, E.S.: Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(2), 295–326 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bothe, D., Prüss, J.: \(L_P\)-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39(2), 379–421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Breit, D., Feireisl, E., Hofmanová, M.: Markov selection for the stochastic compressible Navier–Stokes system. arxiv preprint No. arxiv:1809.07265 (2018)

  7. Breit, D., Feireisl, E., Hofmanová, M.: Stochastically Forced Compressible Fluid Flows. De Gruyter, Berlin (2018)

    Book  MATH  Google Scholar 

  8. Breit, D., Feireisl, E., Hofmanová, M.: Solution semiflow to the isentropic Euler system. Arch. Ration. Mech. Anal. 235(1), 167–194 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Breit, D., Feireisl, E., Hofmanová, M.: Dissipative solutions and semiflow selection for the complete Euler system. Commun. Math. Phys. (2020) (to appear)

  10. Brenier, Y., De Lellis, C., Székelyhidi Jr., L.: Weak-strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305(2), 351–361 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Buckmaster, T., De Lellis, C., Székelyhidy, L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. 72(2), 229–274 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buckmaster, T., Vicol, V.: Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci. 6(1), 173–263 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. Math. (2) 189(1), 101–144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cardona, J.E., Kapitanskii, L.: Semiflow selection and Markov selection theorems. Arxive Preprint Series, arXiv:1707.04778v1 (2017)

  15. Chang, T., Jin, B.J., Novotný, A.: Compressible Navier-Stokes system with general inflow-outflow boundary data. SIAM J. Math. Anal. 51(2), 1238–1278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, G.-Q., Torres, M., Ziemer, W.P.: Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws. Commun. Pure Appl. Math. 62(2), 242–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Constantin, P., Wu, J.: Statistical solutions of the Navier-Stokes equations on the phase space of vorticity and the inviscid limits. J. Math. Phys. 38(6), 3031–3045 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  19. Feireisl, E., Petzeltová, H.: Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow. Arch. Ration. Mech. Anal. 150, 77–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fjordholm, U.S., Lanthaler, S., Mishra, S.: Statistical solutions of hyperbolic conservation laws: foundations. Arch. Ration. Mech. Anal. 226, 809–849 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fjordholm, U.S., Wiedemann, E.: Statistical solutions and Onsager’s conjecture. Physica D 376(377), 259–265 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Flandoli, F., Romito, M.: Markov selections for the 3D stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 140(3–4), 407–458 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Foias, C.: Statistical study of Navier-Stokes equations. I, II. Rend. Sem. Mat. Univ. Padova, 48:219–348 (1973); ibid. 49 (1973), 9–123 (1972)

  24. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  25. Foias, C., Mondaini, C.F., Titi, E.S.: A discrete data assimilation scheme for the solutions of the two-dimensional Navier-Stokes equations and their statistics. SIAM J. Appl. Dyn. Syst. 15(4), 2109–2142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Foias, C., Rosa, R.M.S., Temam, R.: Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations. Ann. Inst. Fourier (Grenoble) 63(6), 2515–2573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Foias, C., Rosa, R.M.S., Temam, R.M.: Convergence of time averages of weak solutions of the three-dimensional Navier-Stokes equations. J. Stat. Phys. 160(3), 519–531 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Foias, C., Rosa, R.M.S., Temam, R.M.: Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations. J. Dyn. Differ. Equ. 31(3), 1689–1741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Germain, P.: Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Guo, X., Hong, J., Lin, T., Yang, N.: Relaxed Wasserstein, with applications to GANs and distributionally robust optimization. Arxive Preprint Series, arXiv 1705.07164v5 (2019)

  31. Jakubowski, A.: On the Skorokhod topology. Ann. Inst. H. Poincaré Probab. Statist. 22(3), 263–285 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Krylov, N.V.: The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes. Izv. Akad. Nauk SSSR Ser. Mat. 37, 691–708 (1973)

    MathSciNet  Google Scholar 

  33. Kukučka, P.: On the existence of finite energy weak solutions to the Navier-Stokes equations in irregular domains. Math. Methods Appl. Sci. 32(11), 1428–1451 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kwon, Y.-S., Novotný, A., Satko, V.: Dissipative solutions to compressible Navier–Stokes equations with general inflow-outflow data: existence, stability and weak strong uniqueness. arxiv preprint No.arxiv:1905.02667 (2019)

  35. Levant, B., Ramos, F., Titi, E.S.: On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model. Commun. Math. Sci. 8(1), 277–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lions, P.-L.: Mathematical Topics in Fluid Dynamics, vol. 2. Compressible Models, vol. 2. Oxford Science Publication, Oxford (1998)

    MATH  Google Scholar 

  37. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Sprung, B.: Upper and lower bounds for the Bregman divergence. J. Inequal. Appl., Paper No. 4, 12 (2019)

  40. Valli, A., Zajaczkowski, M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Vishik, M.J., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics, vol. 9 of Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1988) [Translated from the 1980 Russian original [ MR0591678] by D. A. Leites

  42. Whitt, W.: Stochastic-Process Limits. An introduction to stochastic-process limits and their application to queues. Springer Series in Operations Research. Springer, New York (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fanelli.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of F.F. has been partially supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissement d’Avenir” (ANR-11-IDEX-0007), and by the projects BORDS (ANR-16-CE40-0027-01) and SingFlows (ANR-18-CE40-0027), all operated by the French National Research Agency (ANR).

The work of E.F. was partially supported by the Czech Sciences Foundation (GAČR), Grant Agreement 18-05974S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanelli, F., Feireisl, E. Statistical Solutions to the Barotropic Navier–Stokes System. J Stat Phys 181, 212–245 (2020). https://doi.org/10.1007/s10955-020-02577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02577-1

Keywords

Mathematics Subject Classification

Navigation