Skip to main content
Log in

Piezoelectric, magnetic and magnetoelectric properties of a new lead-free multiferroic (1-x) Ba0.95Ca0.05Ti0.89Sn0.11O3—(x) CoFe2O4 particulate composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

New multiferroic particulate composites (1-x) Ba0.95Ca0.05Ti0.89Sn0.11O3–(x) CoFe2O4 with (x = 0.1, 0.2, 0.3, 0.4 and 0.5) have been prepared by mechanical mixing of the calcined and milled individual ferroic phases. X-ray diffraction and Raman spectroscopy analysis confirmed the formation of both perovskite Ba0.95Ca0.05Ti0.89Sn0.11O3 (BCTSn) and spinel CoFe2O4 (CFO) phases without the presence of additional phases. The morphological properties of the composites were provided by using field emission scanning electron microscopy. The BCTSn-CFO composites exhibit multiferroic behavior at room temperature, as evidenced by ferroelectric and ferromagnetic hysteresis loops. For all composites, the converse piezoelectric coefficient was calculated and found to decrease from 203 pm.V−1 to 27 pm.V−1 in pure BCTSn. when the CFO content increases. The magnetoelectric (ME) coupling was measured under a magnetic field up to 10 kOe and the maximum ME response found to be 0.1 mV.cm−1.Oe−1 for the composition 0.7 BCTSn-0.3 CFO exhibiting a high degree of pseudo-cubicity and large density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. (2011). https://doi.org/10.1002/chin.201118183

    Article  Google Scholar 

  2. B. Xiao, W. Zheng, Y. Dong, N. Ma, P. Du, Multiferroic ceramic composite with in situ glassy barrier interface and novel electromagnetic properties. J. Phys. Chem. (2014). https://doi.org/10.1021/jp411167g

    Article  Google Scholar 

  3. Y. Zhu, J. Shen, K. Zhou, C. Chen, X. Yang, C. Li, Multifunctional magnetic composite microspheres with in situ growth au nanoparticles: a highly efficient catalyst system. J. Phys. Chem. C 115(5), 1614–1619 (2011). https://doi.org/10.1021/jp109276q

    Article  CAS  Google Scholar 

  4. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  5. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008). https://doi.org/10.1063/1.2836410

    Article  CAS  Google Scholar 

  6. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38(8), R123–R152 (2005). https://doi.org/10.1088/0022-3727/38/8/R01

    Article  CAS  Google Scholar 

  7. M. Etier, V.V. Shvartsman, S. Salamon, Y. Gao, H. Wende, D.C. Lupascu, The direct and the converse magnetoelectric effect in multiferroic cobalt ferrite-barium titanate ceramic composites. J. Am. Ceram. Soc. 99(11), 3623–3631 (2016). https://doi.org/10.1111/jace.14362

    Article  CAS  Google Scholar 

  8. V.V. Shvartsman, F. Alawneh, P. Borisov, D. Kozodaev, D.C. Lupascu, Converse magnetoelectric effect in CoFe 2 O 4–BaTiO 3 composites with a core–shell structure. Smart Mater. Struct. 20(7), 075006 (2011). https://doi.org/10.1088/0964-1726/20/7/075006

    Article  CAS  Google Scholar 

  9. S. Ben Moumen et al., Structural, dielectric and magnetic studies of (0–3) type multiferroic (1–x) BaTi0.8Sn0.2O3–(x) La0.5Ca0.5MnO3 (0 ≤ x ≤ 1) composite ceramics. J. Mater. Sci.: Mater. Electron. 31(21), 19343–19354 (2020). https://doi.org/10.1007/s10854-020-04468-3

    Article  CAS  Google Scholar 

  10. H.J. Xiang, S.H. Wei, M.H. Whangbo, J.L.F. Da Silva, Spin-orbit coupling and ion displacements in multiferroic TbMnO 3. Phys. Rev. Lett. 101(3), 037209 (2008). https://doi.org/10.1103/PhysRevLett.101.037209

    Article  CAS  Google Scholar 

  11. C.-Y. Kuo et al., Single-domain multiferroic BiFeO3 films. Nat. Commun. 7(1), 12712 (2016). https://doi.org/10.1038/ncomms12712

    Article  CAS  Google Scholar 

  12. P.R. Mickel, H. Jeen, P. Kumar, A. Biswas, A.F. Hebard, Proximate transition temperatures amplify linear magnetoelectric coupling in strain-disordered multiferroic BiMnO 3. Phys. Rev. B. 93(13), 134205 (2016). https://doi.org/10.1103/PhysRevB.93.134205

    Article  CAS  Google Scholar 

  13. A. Jain, Y.G. Wang, N. Wang, Y. Li, F.L. Wang, Tuning the dielectric, ferroelectric and electromechanical properties of Ba0.83Ca0.10Sr0.07TiO3–MnFe2O4 multiferroic composites. Ceram. Int. 46(6), 7576–7585 (2020). https://doi.org/10.1016/j.ceramint.2019.11.257

    Article  CAS  Google Scholar 

  14. M. Hadouchi, F.L. Marrec, Z. Mahhouti, J. Belhadi, M.E. Marssi, A. Lahmar, Enhanced magnetization in multiferroic nanocomposite Bi0.9Gd0.1Fe0.9Mn0.05X0.05O3 (X= Cr, Co) thin films. Thin Solid Films. 709, 138025 (2020). https://doi.org/10.1016/j.tsf.2020.138025

    Article  CAS  Google Scholar 

  15. P.J. Praveen, V.R. Monaji, S.D. Kumar, V. Subramanian, D. Das, Enhanced magnetoelectric response from lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 – CoFe2O4 laminate and particulate composites. Ceram. Int. 44(4), 4298–4306 (2018). https://doi.org/10.1016/j.ceramint.2017.12.018

    Article  CAS  Google Scholar 

  16. H. Yang, J. Zhang, Y. Lin, T. Wang, High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites. Sci. Rep. 7(1), 44855 (2017). https://doi.org/10.1038/srep44855

    Article  CAS  Google Scholar 

  17. M. Lorenz et al., Epitaxial coherence at interfaces as origin of high magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices. Adv. Mater. Interf. 3(11), 1500822 (2016). https://doi.org/10.1002/admi.201500822

    Article  CAS  Google Scholar 

  18. M. Rafique, A. Herklotz, K. Dörr, S. Manzoor, Giant room temperature magnetoelectric response in strain controlled nanocomposites. Appl. Phys. Lett. 110(20), 202902 (2017). https://doi.org/10.1063/1.4983357

    Article  CAS  Google Scholar 

  19. L.K. Pradhan, R. Pandey, R. Kumar, M. Kar, Lattice strain induced multiferroicity in PZT-CFO particulate composite. J. Appl. Phys. 123(7), 074101 (2018). https://doi.org/10.1063/1.5008607

    Article  CAS  Google Scholar 

  20. M. Naveed-Ul-Haq et al., Strong converse magnetoelectric effect in (Ba, Ca)(Zr, Ti)O3–NiFe2O4 multiferroics: a relationship between phase-connectivity and interface coupling. Acta Materialia 144, 305–313 (2018). https://doi.org/10.1016/j.actamat.2017.10.048

    Article  CAS  Google Scholar 

  21. R.A. Bucur, I. Badea, A.I. Bucur, S. Novaconi, Dielectric, ferroelectric and piezoelectric proprieties of GdCoO3 doped (K0.5Na0.5)NbO3. J. Alloy. Comp. 630, 43–47 (2015). https://doi.org/10.1016/j.jallcom.2015.01.030

    Article  CAS  Google Scholar 

  22. L.Q. Cheng, J.F. Li, A review on one dimensional perovskite nanocrystals for piezoelectric applications. J. Mater. 2(1), 25–36 (2016). https://doi.org/10.1016/j.jmat.2016.02.003

    Article  Google Scholar 

  23. Q. Lou et al., Ferroelectric properties of Li-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 101(8), 3597–3604 (2018). https://doi.org/10.1111/jace.15480

    Article  CAS  Google Scholar 

  24. M. Acosta et al., BaTiO3 -based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4(4), 041305 (2017). https://doi.org/10.1063/1.4990046

    Article  CAS  Google Scholar 

  25. B. Asbani et al., Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1-xLa2x/3TiO3 ferroelectric ceramics. J. Alloy. Comp. 730, 501–508 (2018). https://doi.org/10.1016/j.jallcom.2017.09.301

    Article  CAS  Google Scholar 

  26. D. Fu, M. Itoh, S. Koshihara, T. Kosugi, S. Tsuneyuki, Anomalous phase diagram of ferroelectric (Ba, Ca ) TiO 3 single crystals with giant electromechanical response. Phys. Rev. Lett. 100(22), 227601 (2008). https://doi.org/10.1103/PhysRevLett.100.227601

    Article  CAS  Google Scholar 

  27. Y. Yao et al., Large piezoelectricity and dielectric permittivity in BaTiO3 –xBaSnO3 system: the role of phase coexisting. EPL 98(2), 27008 (2012). https://doi.org/10.1209/0295-5075/98/27008

    Article  CAS  Google Scholar 

  28. N. Horchidan et al., Multiscale study of ferroelectric–relaxor crossover in BaSnxTi1−xO3 ceramics. J. European Ceram. Soc. 34(15), 3661–3674 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.005

    Article  CAS  Google Scholar 

  29. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  Google Scholar 

  30. W. Liu, L. Cheng, S. Li, Prospective of (BaCa)(ZrTi)O3 lead-free piezoelectric ceramics. Crystals 9(3), 179 (2019). https://doi.org/10.3390/cryst9030179

    Article  CAS  Google Scholar 

  31. V. Madhu Babu, J. Paul Praveen, D. Das, Synthesis and aging behaviour study of lead-free piezoelectric BCZT ceramics. Chem. Phys. Lett. 772, 138560 (2021). https://doi.org/10.1016/j.cplett.2021.138560

    Article  CAS  Google Scholar 

  32. L.F. Zhu, B.P. Zhang, L. Zhao, J.-F. Li, High piezoelectricity of BaTiO3 –CaTiO3 –BaSnO3 lead-free ceramics. J. Mater. Chem. C 2(24), 4764–4771 (2014). https://doi.org/10.1039/C4TC00155A

    Article  CAS  Google Scholar 

  33. Y. Hadouch et al., Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol–gel method. J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-021-07411-2

    Article  Google Scholar 

  34. Y. Hadouch, Enhanced relative cooling power and large inverse magnetocaloric effect of cobalt ferrite nanoparticles synthesized by auto-combustion method. J. Magnetism Magnetic Mater. (2022). https://doi.org/10.1016/j.jmmm.2022.169925

    Article  Google Scholar 

  35. Z. Mahhouti et al., Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 30(16), 14913–14922 (2019). https://doi.org/10.1007/s10854-019-01863-3

    Article  CAS  Google Scholar 

  36. J. Paul Praveen, M.V. Reddy, J. Kolte, S. Dinesh Kumar, V. Subramanian, D. Das, Synthesis, characterization, and magneto-electric properties of (1–x )BCZT- x CFO ceramic particulate composites. Int. J. Appl. Ceram. Technol. 14(2), 200–210 (2017). https://doi.org/10.1111/ijac.12640

    Article  CAS  Google Scholar 

  37. J. Rani, K.L. Yadav, S. Prakash, Dielectric and magnetic properties of x CoFe 2 O 4 –(1–x )[0.5Ba(Zr 0.2 Ti 0.8)O 3–0.5(Ba 0.7 Ca 0.3)TiO 3 ] composites. Mater. Res. Bulletin 60, 367–375 (2014). https://doi.org/10.1016/j.materresbull.2014.09.013

    Article  CAS  Google Scholar 

  38. M.G. Majumdar, Analysis of stress-coupled magneto-electric effect in BaTiO3–CoFe2O4 composites using raman spectroscopy. Int. J. Sci. Eng. Res. 3(11), 8 (2012)

    Google Scholar 

  39. M. Zahid et al., Enhanced near-ambient temperature energy storage and electrocaloric effect in the lead-free BaTi0.89Sn0.11O3 ceramic synthesized by sol–gel method. J. Mater. Sci.: Mater. Electron. 33(16), 12900–12911 (2022). https://doi.org/10.1007/s10854-022-08233-6

    Article  CAS  Google Scholar 

  40. S. Dabas, P. Chaudhary, M. Kumar, S. Shankar, O.P. Thakur, Structural, microstructural and multiferroic properties of BiFeO3–CoFe2O4 composites. J. Mater. Sci.: Mater. Electron. 30(3), 2837–2846 (2019). https://doi.org/10.1007/s10854-018-0560-5

    Article  CAS  Google Scholar 

  41. A.S. Kumar, C.S.C. Lekha, S. Vivek, K. Nandakumar, M.R. Anantharaman, S.S. Nair, Effect of CoFe2O4 weight fraction on multiferroic and magnetoelectric properties of (1–x)Ba0.85Ca0.15Zr0.1Ti0.9O3−xCoFe2O4 particulate composites. J Mater. Sci.: Mater. Electron. 30(9), 8239–8248 (2019). https://doi.org/10.1007/s10854-019-01140-3

    Article  CAS  Google Scholar 

  42. L.-F. Zhu et al., Phase transition and high piezoelectricity in (Ba, Ca)(Ti 1–x Sn x )O 3 lead-free ceramics. Appl. Phys. Lett. 103(7), 072905 (2013). https://doi.org/10.1063/1.4818732

    Article  CAS  Google Scholar 

  43. M. Breitenbach, H. Deniz, S.G. Ebbinghaus, Magnetoelectric and HR-STEM investigations on eutectic CoFe2O4–Ba1–xSrxTiO3 composites. J. Phys. Chem. Solids 135, 109076 (2019). https://doi.org/10.1016/j.jpcs.2019.109076

    Article  CAS  Google Scholar 

  44. M.M. Vopson, Y.K. Fetisov, G. Caruntu, G. Srinivasan, Measurement techniques of the magneto-electric coupling in multiferroics. Materials 10(8), 963 (2017). https://doi.org/10.3390/ma10080963

    Article  CAS  Google Scholar 

  45. V.V. Laguta et al., Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. J. Mater. Sci. 51(11), 5330–5342 (2016). https://doi.org/10.1007/s10853-016-9836-4

    Article  CAS  Google Scholar 

  46. A.A. Momin, M.A. Zubair, Md.F. Islam, A.K.M.A. Hossain, Enhance magnetoelectric coupling in xLi0.1Ni0.2Mn0.6Fe2.1O4–(1–x)BiFeO3 multiferroic composites. J. Mater. Sci: Mater. Electron. 30(14), 13033–13046 (2019). https://doi.org/10.1007/s10854-019-01665-7

    Article  CAS  Google Scholar 

  47. A. Plyushch et al., Magnetoelectric coupling in nonsintered bulk BaTiO3–xCoFe2O4 multiferroic composites. J. Alloy. Comp. 917, 165519 (2022). https://doi.org/10.1016/j.jallcom.2022.165519

    Article  CAS  Google Scholar 

  48. D.S.F. Viana et al., Synthesis and multiferroic properties of particulate composites resulting from combined size effects of the magnetic and ferroelectric phases. Ceram. Int. 48(1), 931–940 (2022). https://doi.org/10.1016/j.ceramint.2021.09.177

    Article  CAS  Google Scholar 

  49. R.-F. Zhang, C.-Y. Deng, L. Ren, Z. Li, J.-P. Zhou, Dielectric, ferromagnetic and maganetoelectric properties of BaTiO3–Ni0.7Zn0.3Fe2O4 composite ceramics. Mater. Res. Bulletin 48(10), 4100–4104 (2013). https://doi.org/10.1016/j.materresbull.2013.06.026

    Article  CAS  Google Scholar 

  50. R. Köferstein, F. Oehler, S.G. Ebbinghaus, Fine-grained magnetoelectric Sr0.5Ba0.5Nb2O6–CoFe2O4 composites synthesized by a straightforward one-pot method. Mater. Chem. Phys. 278, 125616 (2022). https://doi.org/10.1016/j.matchemphys.2021.125616

    Article  CAS  Google Scholar 

  51. C.M. Kanamadi et al., Dielectric and magnetic properties of (x)CoFe2O4+(1–x)Ba0.8Sr0.2TiO3 magnetoelectric composites. Mater. Chem. Phys. 116(1), 6–10 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.003

    Article  CAS  Google Scholar 

  52. S.S. Chougule, D.R. Patil, B.K. Chougule, Electrical conduction and magnetoelectric effect in ferroelectric rich (x)Ni0.9Zn0.1Fe2O4+(1–x)PZT ME composites. J. Alloy. Comp. 452(2), 205–209 (2008). https://doi.org/10.1016/j.jallcom.2006.11.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the European Union Horizon 2020 Research and Innovation actions MSCA-RISE-ENGIMA (No. 778072), MSCA-RISE-MELON (No. 872631), FAPESP and CNPq, Brazilian agencies.

Funding

The European Union's Horizon 2020 research; MSCA-RISE-ENGIMA (No. 778072); MSCA-RISE-MELON (No. 872631).

Author information

Authors and Affiliations

Authors

Contributions

All authors certify that they have participated sufficiently in the work to take public responsibility for the content. Furthermore, each author certifies that this work will not be submitted to other journal or published in any other publication before. YH: contributed to investigation, methodology, data curation, writing original draft, and validation. DM: contributed to visualization, methodology, writing—review and editing, validation, and supervision. MA: contributed to visualization, writing—review and editing, validation, and supervision. NO: contributed to formal analysis, writing—review and editing, and validation. YG: contributed to formal analysis, writing, validation, and supervision. ZK: contributed to writing—review and editing, visualization, and validation. VL: contributed to writing—review and editing, visualization, and validation. YK: contributed to review and editing, visualization, and validation. KH: contributed to review and editing, visualization, and validation. MEM: contributed to visualization, validation, writing—review and editing, and supervision.

Corresponding author

Correspondence to Youness Hadouch.

Ethics declarations

Conflicts of interest

Not applicable.

Ethica approval

Not applicable.

Consent to participate

We confirm that all authors mentioned in the manuscript have participated in, read and approved the manuscript, and have given their consent for the submission and subsequent publication of the manuscript.

Consent for publication

We confirm that all the authors mentioned in the manuscript have agreed to publish this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadouch, Y., Mezzane, D., Amjoud, M. et al. Piezoelectric, magnetic and magnetoelectric properties of a new lead-free multiferroic (1-x) Ba0.95Ca0.05Ti0.89Sn0.11O3—(x) CoFe2O4 particulate composites. J Mater Sci: Mater Electron 34, 725 (2023). https://doi.org/10.1007/s10854-023-10145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10145-y

Navigation