Skip to main content

Advertisement

Log in

On the nature of doping effect of methane in ZnO thin films deposited by RF-magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A comparative study of the effects of methane and hydrogen as reactive agents on the structural, optical, and electrical properties of ZnO thin films deposited by magnetron sputtering has been performed. The research was aimed at the identification of the nature of the previously reported strong n-type doping effect of methane. To that end, the impact of carbon and hydrogen released by the plasma decomposition of methane on the properties of ZnO films was compared with the impact of molecular hydrogen intentionally added to argon. Both methane and hydrogen caused strong enhancement of n-type conductivity in ZnO films; however, the doping effect of methane was found to be about one order of magnitude larger. The main structural effect of methane was the loss of preferential orientation and a decrease in the size of ZnO crystallites. Room-temperature photoluminescence of these films exhibited a strongly reduced green-yellow emission band in the visible spectral range accompanied by the development of a specific blue emission band. The hydrogen concentration in the ZnO films deposited using methane examined by secondary ion mass spectroscopy was found to be significantly larger than that in the films deposited using pure molecular hydrogen, which is suggested to be one of the reasons for the superior n-type doping efficiency of methane in comparison with molecular hydrogen. The enhanced structural disorder caused by methane is suggested as another contribution to the doping effect of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41–301 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  2. Ch.G. Janotti, Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  CAS  Google Scholar 

  3. S.C. Dixon, D.O. Scanlon, C.J. Carmalta, I.P. Parkin, n-Type doped transparent conducting binary oxides: an overview. J. Mater. Chem. C 4, 6946–6961 (2016). https://doi.org/10.1039/C6TC01881E

    Article  CAS  Google Scholar 

  4. Y. Liu, Y. Li, H. Zeng, ZnO-based transparent conductive thin films: doping, performance, and processing. J. Nanomater. (2013). https://doi.org/10.1155/2013/196521

    Article  Google Scholar 

  5. S.D. Ponja, S. Sathasivam, I.P. Parkin, C.J. Carmalt, Highly conductive and transparent gallium doped zinc oxide thin flms via chemical vapor deposition. Sci. Rep. 10, 638 (2020). https://doi.org/10.1038/s41598-020-57532-7

    Article  CAS  Google Scholar 

  6. D. Ramírez, K. Álvarez, G. Riveros, M. Tejos, M.G. Lobos, New insights on the doping of ZnO films with elements from group IIIA through electrochemical deposition. J. Solid State Electrochem. 18, 2869–2884 (2014). https://doi.org/10.1007/s10008-014-2558-0

    Article  CAS  Google Scholar 

  7. Ch.G. Van de Walle, Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000). https://doi.org/10.1103/PhysRevLett.85.1012

    Article  Google Scholar 

  8. J. Nomoto, H. Makino, T. Yamamoto, Characteristics of the orientation distribution and carrier transport of polycrystalline Al-doped ZnO films prepared by direct current magnetron sputtering. Thin Solid Films 644, 33–40 (2017). https://doi.org/10.1016/j.tsf.2017.10.004

    Article  CAS  Google Scholar 

  9. F.-H. Wang, H.-P. Chang, C.-C. Tseng, C.-C. Huang, Effects of H2 plasma treatment on properties of ZnO: Al thin films prepared by RF magnetron sputtering. Surf. Coat. Technol. 205, 5269–5277 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.033

    Article  CAS  Google Scholar 

  10. D.-H. Kim, S.-H. Lee, G.-H. Lee, H.-B. Kim, K.H. Kim, Y.-G. Lee, T.-H. Yu, Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films. J. Appl. Phys. 108, 023520 (2010). https://doi.org/10.1063/1.3456527

    Article  CAS  Google Scholar 

  11. F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hüpkes, D. Hrunski, B. Rech, Improved electrical transport in Al-doped zinc oxide by thermal treatment. J. Appl. Phys. 107, 013708 (2010). https://doi.org/10.1063/1.3269721

    Article  CAS  Google Scholar 

  12. S. Cornelius, M. Vinnichenko, Al in ZnO—from doping to alloying: an investigation of Al electrical activation in relation to structure and charge transport limits. Thin Solid Films 605, 20–29 (2016). https://doi.org/10.1016/j.tsf.2015.11.059

    Article  CAS  Google Scholar 

  13. K. Matsumoto, K. Kuriyama, K. Kushida, Electrical and photoluminescence properties of carbon implanted ZnO bulk single crystals. Nucl. Instr. Meth. Phys. Res. B 267, 1568–1570 (2009). https://doi.org/10.1016/j.nimb.2009.01.128

    Article  CAS  Google Scholar 

  14. D. Sarkar, C.K. Ghosh, K.K. Chattopadhyay, Carbon doped ZnO thin film: unusual nonlinear variation in bandgap and electrical characteristic. Appl. Surf. Sci. 418, 252–257 (2017). https://doi.org/10.1016/j.apsusc.2016.12.039

    Article  CAS  Google Scholar 

  15. A.V. Vasin, A.V. Rusavsky, E.G. Bortchagovsky, Y.V. Gomeniuk, A.S. Nikolenko, V.V. Strelchuk, R. Yatskiv, S. Tiagulskyi, S. Prucnal, W. Skorupa, A.N. Nazarov, Methane as a novel doping precursor for deposition of highly conductive ZnO thin films by magnetron sputtering 174, 109199 (2020). https://doi.org/10.1016/j.vacuum.2020.109199

    Article  CAS  Google Scholar 

  16. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, New Jersey, 2006)

    Google Scholar 

  17. S. Golovynskyi, A. Ievtushenko, S. Mamykin, M. Dusheiko, I. Golovynska, O. Bykov, O. Olifan, D. Myroniuk, S. Tkach, J. Qu, High transparent and conductive undoped ZnO thin films deposited by reactive ion-beam sputtering. Vacuum 153, 204–210 (2018). https://doi.org/10.1016/j.vacuum.2018.04.019

    Article  CAS  Google Scholar 

  18. J. Albertsson, S.C. Abrahams, A. Kvick, Acta Crystallogr. B 45, 34–40 (1989). https://doi.org/10.1107/S0108768188010109

    Article  Google Scholar 

  19. M. Šćepanović, M. Grujić-Brojcin, K. Vojisavljević, S. Bernić, T. Srecković, Raman study of structural disorder in ZnO nanopowders. J. Raman Spectrosc. 41, 914–921 (2010). https://doi.org/10.1002/jrs.2546

    Article  CAS  Google Scholar 

  20. F.J. Manjón, B. Marí, J. Serrano, A.H. Romero, Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1856222

    Article  Google Scholar 

  21. J.P. Zhang, L.D. Zhang, L.Q. Zhu, Y. Zhang, M. Liu, X.J. Wang, G. He, Characterization of ZnO: N films prepared by annealing sputtered zinc oxynitride films at different temperatures. J. Appl. Phys. 102, 114903 (2007). https://doi.org/10.1063/1.2817255

    Article  CAS  Google Scholar 

  22. Z. Xiao, Y. Liu, J. Zhang, D. Zhao, Lu. Youming, D.S.X. Fan, Electrical and structural properties of p-type ZnO: N thin films prepared by plasma enhanced chemical vapour deposition. Semicond. Sci. Technol. 20, 796–800 (2005). https://doi.org/10.1088/0268-1242/20/8/027

    Article  CAS  Google Scholar 

  23. A. Kaschner, U. Haboeck, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 80, 1909 (2002). https://doi.org/10.1063/1.1461903

    Article  CAS  Google Scholar 

  24. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974 (2003). https://doi.org/10.1063/1.1609251

    Article  CAS  Google Scholar 

  25. F.J. Manjon, B. Marı, J. Serrano, A.H. Romero, Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 97, 053516 (2005)

    Article  Google Scholar 

  26. M.A. Gluba, N.H. Nickel, N. Karpensky, Interstitial zinc clusters in zinc oxide. Phys. Rev. B 88, 245201 (2013). https://doi.org/10.1103/PhysRevB.88.245201

    Article  CAS  Google Scholar 

  27. M. Peres, S. Magalhães, M.R. Soares, M.J. Soares, L. Rino, E. Alves, K. Lorenz, M.R. Correia, A.C. Lourenço, T. Monteiro, Disorder induced violet/blue luminescence in RF-deposited ZnO films. Phys. Status Solidi C 10, 662–666 (2013). https://doi.org/10.1002/pssc.201200873

    Article  CAS  Google Scholar 

  28. M.A. Reshchikov, V. Avrutin, N. Izyumskaya, R. Shimada, H. Morkoc, Anomalous shifts of blue and yellow luminescence bands in MBE-grown ZnO films. Physica B 401, 374–377 (2007). https://doi.org/10.1016/j.physb.2007.08.191

    Article  CAS  Google Scholar 

  29. K. Bandopadhyay, J. Mitra, Zn interstitials and O vacancies responsible for n-type ZnO: what do the emission spectra reveal? RSC Adv. 5, 23540–23547 (2015). https://doi.org/10.1039/C5RA00355E

    Article  CAS  Google Scholar 

  30. P.A. Rodnyi, I.V. Khodyuk, Optical and luminescence properties of zinc oxide. Opt Spectrosc. 111, 776–785 (2011). https://doi.org/10.1134/S0030400X11120216

    Article  CAS  Google Scholar 

  31. D.C. Reynolds, D.C. Look, B. Jogai, Fine structure on the green band in ZnO. J. Appl. Phys. 89, 6189–6191 (2001). https://doi.org/10.1063/1.1356432

    Article  CAS  Google Scholar 

  32. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943–945 (2001). https://doi.org/10.1063/1.1394173

    Article  CAS  Google Scholar 

  33. M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643–2667 (2010). https://doi.org/10.3390/ma3042643

    Article  CAS  Google Scholar 

  34. J. Cízek, J. Valenta, P. Hruska, O. Melikhova, I. Prochazka, M. Novotný, J. Bulir, Origin of green luminescence in hydrothermally grown ZnO single crystals. Appl. Phys. Lett. 106, 251902 (2015). https://doi.org/10.1063/1.4922944

    Article  CAS  Google Scholar 

  35. C. Tanguy, Analytical expression of the complex dielectric function for the Hulthén potential. Phys. Rev. B 60, 10660–10663 (1999). https://doi.org/10.1103/PhysRevB.60.10660

    Article  CAS  Google Scholar 

  36. M.-B. Bouzourâa, Y. Battie, S. Dalmasso, M.-A. Zaïbi, M. Oueslati, A.E. Naciri, Comparative study of ZnO optical dispersion laws. Superlattices Microstruct. 104, 24–36 (2017). https://doi.org/10.1016/j.spmi.2017.01.044

    Article  CAS  Google Scholar 

  37. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007). https://doi.org/10.1002/9780470060193

    Book  Google Scholar 

  38. R. Jakiela, The role of atmospheric elements in the wide band-gap semiconductors. Acta Phys. Pol. A 136, 916–939 (2019). https://doi.org/10.12693/APhysPolA.136.916

    Article  CAS  Google Scholar 

  39. N. Ohashi, T. Ishigaki, N. Okada, H. Taguchi, I. Sakaguchi, Sh. Hishita, T. Sekiguchi, H. Haneda, Passivation of active recombination centers in ZnO by hydrogen doping. J. Appl. Phys. 93, 6386 (2003). https://doi.org/10.1063/1.1569034

    Article  CAS  Google Scholar 

  40. R.J. Mendelsberg, J. Kennedy, S.M. Durbin, R.J. Reeves, Carbon enhanced blue–violet luminescence in ZnO films grown by pulsed laser deposition. Curr. Appl. Phys. 8, 283–286 (2008). https://doi.org/10.1016/j.cap.2007.10.016

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education and Science of Ukraine in the frame of the joint research programs of Ukraine and Czech Republik (project #M/22-2021), by Fundamental research program (Project #2211-F), by the Program Science for Peace and Security (NATO project SPS G5853). This work was also supported by the Czech Science Foundation (Project No. 20-24366S) and by the Ministry of Industry and Trade of the Czech Republic (Institutional Support Project).

Author information

Authors and Affiliations

Authors

Contributions

AR performed technological deposition processing of ZnO films. Spectral ellipsometry measurements and corresponding calculations were performed by SM. Raman scattering measurements were performed y ASN and VS. ANN and IT examined electrical parameters of the samples. Structural parameters from XRD were provided by AG and VK. RY and JG were responsible for SEM and PL measurements while JL and IE performed SIMS experiments. AV was involved in all experiments and was a major contributor in writing the manuscript.

Corresponding author

Correspondence to A. V. Vasin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasin, A.V., Rusavsky, A.V., Mamykin, S.V. et al. On the nature of doping effect of methane in ZnO thin films deposited by RF-magnetron sputtering. J Mater Sci: Mater Electron 33, 6421–6431 (2022). https://doi.org/10.1007/s10854-022-07814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07814-9

Navigation