Skip to main content
Log in

Landau–Devonshire thermodynamic potentials for displacive perovskite ferroelectrics from first principles

  • Computation and theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A general approach for fitting Landau–Devonshire thermodynamic potentials directly from first principles is developed for simple displacive ferroelectric perovskite materials. As the first step, a \(\hbox {PbTiO}_3\) potential is parameterized completely from density functional theory calculations as a test case, under the only assumption that the transition between the non-polar and polar phases is of first order. The utility of this approach is assessed by comparing quantities characterizing the phase transition, dielectric and piezoelectric properties and equibiaxial strain–temperature phase diagrams with the predictions of several thermodynamic potentials parameterized from experimental data. In the second step, a similar parameterization is generated for a fictitious polar perovskite \(\hbox {SnTiO}_{3}\), enabling us to predictively evaluate an approximate ‘equibiaxial strain–temperature–spontaneous polarization’ phase diagram for its thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. See also BESAC report “From Quanta to the Continuum: Opportunities for Mesoscale Science” available from http://science.energy.gov/ as well as the complete volume 40 of the MRS Bulletin from November 2015.

  2. There is no reason why this need be the case. If the Landau polynomial is convergent, the temperature-dependent terms play a minor role near the phase transition where the polynomial becomes asymptotically accurate. At lower temperatures, however, these terms may become important. This is the case, for example, in barium titanate.

References

  1. Laughlin RB, Pines D, Schmalian J, Stojković BP, Wolynes P (2000) The middle way. PNAS 97:32

    Google Scholar 

  2. Crabtree G, Sarrao J (2012) Opportunities for mesoscale science. MRS Bull. 37:1079

    Google Scholar 

  3. Sarrao J, Crabtree G (2015) Progress in mesoscale science. MRS Bull. 40:919

    Google Scholar 

  4. Provatas N, Elder K (2010) Phase-Field methods in materials science and engineering. Wiley, New York

    Google Scholar 

  5. Mangeri J et al (2017) Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. Nanoscale 9:1616

    Google Scholar 

  6. Mangeri J, Alpay SP, Nakhmanson S, Heinonen OG (2018) Electromechanical control of polarization vortex ordering in an interacting ferroelectric-dielectric composite dimer. Appl Phys Lett 113:092901

    Google Scholar 

  7. Pitike KC et al (2018) Metastable vortex-like polarization textures in ferroelectric nanoparticles of different shapes and sizes. J Appl Phys 124:064104

    Google Scholar 

  8. Weiss CV et al (2009) Compositionally graded ferroelectric multilayers for frequency agile tunable devices. J Mater Sci 44:5364. https://doi.org/10.1007/s10853-009-3514-8

    Google Scholar 

  9. Sun F-C, Kesim MT, Espinal Y, Alpay SP (2016) Are ferroelectric multilayers capacitors in series? J Mater Sci 51:499. https://doi.org/10.1007/s10853-015-9298-0

    Google Scholar 

  10. Misirlioglu IB, Sen C, Kesim MT, Alpay SP (2016) Low-voltage ferroelectric-paraelectric superlattices as gate materials for field-effect transistors. J Mater Sci 51:487. https://doi.org/10.1007/s10853-015-9301-9

    Google Scholar 

  11. Landau L, Lifshitz E (1959) Statistical physics. Pergamon Press, Oxford

    Google Scholar 

  12. Devonshire A (1954) Theory of ferroelectrics. Adv Phys 3:85

    Google Scholar 

  13. Strukov BA, Levanyuk AP (1998) Ferroelectric phenomena in crystals, physical foundations. Springer, Berlin

    Google Scholar 

  14. Chen L-Q (2007) Appendix A—Landau free-energy coefficients. Springer, Berlin, pp 363–372

    Google Scholar 

  15. Salje E (1990) Phase transitions in ferroelastic and co-elastic crystals. Ferroelectrics 104:111

    Google Scholar 

  16. Amin A, Haun MJ, Badger B, McKinstry H, Cross LE (1985) A phenomenological Gibbs function for the single cell region of the \(\text{ PbZrO }_{3}:\text{ PbTiO }_{3}\) solid solution system. Ferroelectrics 65:107

    Google Scholar 

  17. Rossetti GA Jr, Cline JP, Navrotsky A (1998) Phase transition energetics and thermodynamic properties of ferroelectric \(\text{ PbTiO }_3\). J Mater Res 13:3197

    Google Scholar 

  18. Rossetti GA Jr, Maffei N (2005) Specificheat study and Landau analysis of the phase transition in\(\text{ PbTiO }_3\) single crystals. J Phys Condens Matter 17:3953

    Google Scholar 

  19. Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) Thermodynamic theory of \(\text{ PbTiO }_3\). J Appl Phys 62:3331

    Google Scholar 

  20. Heitmann AA, Rossetti GA Jr (2014) Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries. J Am Ceram Soc 97:1661

    Google Scholar 

  21. Li YL, Hu SY, Liu ZK, Chen LQ (2001) Phase-field model of domain structures in ferroelectric thin films. Appl Phys Lett 78:3878

    Google Scholar 

  22. Li Y, Hu S, Liu Z, Chen L (2002) Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater 50:395

    Google Scholar 

  23. Wang J, Shi S-Q, Chen L-Q, Li Y, Zhang T-Y (2004) Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater 52:749

    Google Scholar 

  24. Hong L, Soh A (2011) Unique vortex and stripe domain structures in \(\text{ PbTiO }_3\) epitaxial nanodots. Mech Mater 43:342

    Google Scholar 

  25. Marton P, Klíč A, Paściak M, Hlinka J (2017) First-principles-based Landau–Devonshire potential for \(\text{ BiFeO }_3\). Phys Revs B 96:174110

    Google Scholar 

  26. Hlinka J, Petzelt J, Kamba S, Noujni D, Ostapchuk T (2006) Infrared dielectric response of relaxor ferroelectrics. Phase Transit 79:41

    Google Scholar 

  27. Nakhmanson SM, Naumov I (2010) Goldstone-like states in a layered perovskite with frustrated polarization: A first-principles investigation of \(\text{ PbSr }_{2}\text{ Ti }_{2}\text{ O }_{7}\). Phys Rev Lett 104:097601

    Google Scholar 

  28. Mangeri J, Pitike KC, Alpay SP, Nakhmanson S (2016) Amplitudon and phason modes of electrocaloric energy interconversion. npj Comput Mater 2:16020

    Google Scholar 

  29. Zhang J, Heitmann AA, Alpay SP, Rossetti GA (2009) Electrothermal properties of perovskite ferroelectric films. J Mater Sci 44:5263. https://doi.org/10.1007/s10853-009-3559-8

    Google Scholar 

  30. Epstein RI, Malloy KJ (2009) Electrocaloric devices based on thin-film heat switches. J Appl Phys 106:064509

    Google Scholar 

  31. Alpay SP, Mantese J, Trolier-McKinstry S, Zhang Q, Whatmore RW (2014) Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. Mater Res Bull 39:1099

    Google Scholar 

  32. Khassaf H, Patel T, Alpay SP (2017) Combined intrinsic elastocaloric and electrocaloric properties of ferroelectrics. J Appl Phys 121:144102

    Google Scholar 

  33. Matar S, Baraille I, Subramanian M (2009) First principles studies of \(\text{ SnTiO }_3\) perovskite as potential environmentally benign ferroelectric material. Chem Phys 355:43

    Google Scholar 

  34. Fix T, Sahonta S-L, Garcia V, MacManus-Driscoll JL, Blamire MG (2011) Structural and dielectric properties of \(\text{ SnTiO }_3\), a putative ferroelectric. Cryst Growth Des 11:1422

    Google Scholar 

  35. Parker WD, Rondinelli JM, Nakhmanson SM (2011) First-principles study of misfit strain-stabilized ferroelectric \(\text{ SnTiO }_3\). Phys Rev B 84:245126

    Google Scholar 

  36. Pitike KC, Parker WD, Louis L, Nakhmanson SM (2015) First-principles studies of lone-pair-induced distortions in epitaxial phases of perovskite \(\text{ SnTiO }_{3}\) and \(\text{ PbTiO }_{3}\). Phys Rev B 91:035112

    Google Scholar 

  37. Chang S et al (2016) Atomic layer deposition of environmentally benign \(\text{ SnTiO }_x\) as a potential ferroelectric material. J Vac Sci Technol A 34:01A119

    Google Scholar 

  38. Wang T et al (2016) Chemistry, growth kinetics, and epitaxial stabilization of \(\text{ Sn }^{2+}\) in Sn-doped \(\text{ SrTiO }_3\) using \((\text{ CH }_3)_{6}\text{ Sn }_2\) tin precursor. APL Mater 4:126111

    Google Scholar 

  39. Agarwal R et al (2018) Room-temperature relaxor ferroelectricity and photovoltaic effects in tin titanate directly deposited on a silicon substrate. Phys Rev B 97:054109

    Google Scholar 

  40. Cao W (1994) Polarization gradient coefficients and the dispersion surface of the soft mode in perovskite ferroelectrics. J Phys Soc Jpn 63:1156

    Google Scholar 

  41. Hlinka J, Marton P (2006) Phenomenological model of a \(90^\circ \) domain wall in \(\text{ BaTiO }_3\)-type ferroelectrics. Phys Rev B 74:104104

    Google Scholar 

  42. Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988

    Google Scholar 

  43. Nye J (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford Science Publications, Clarendon Press

    Google Scholar 

  44. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15

    Google Scholar 

  45. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Google Scholar 

  46. Giannozzi P et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Google Scholar 

  47. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048

    Google Scholar 

  48. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Google Scholar 

  49. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Google Scholar 

  50. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892

    Google Scholar 

  51. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Google Scholar 

  52. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515

    Google Scholar 

  53. Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73:045112

    Google Scholar 

  54. Baroni S, Resta R (1986) Ab initio calculation of the macroscopic dielectric constant in silicon. Phys Rev B 33:7017

    Google Scholar 

  55. Nakhmanson SM, Rabe KM, Vanderbilt D (2005) Polarization enhancement in two- and three-component ferroelectric superlattices. Appl Phys Lett 87:102906

    Google Scholar 

  56. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651

    Google Scholar 

  57. Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899

    Google Scholar 

  58. Yuk SF et al (2017) Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects. Sci Rep 7:43482

    Google Scholar 

  59. Perdew JP et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671

    Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Google Scholar 

  61. Perdew JP et al (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Google Scholar 

  62. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    Google Scholar 

  63. Thonhauser T et al (2007) Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys Rev B 76:125112

    Google Scholar 

  64. Cooper VR (2010) Van der Waals density functional: an appropriate exchange functional. Phys Rev B 81:161104

    Google Scholar 

  65. Bilc DI et al (2008) Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys Rev B 77:165107

    Google Scholar 

  66. Sepliarsky M, Phillpot SR, Wolf D, Stachiotti MG, Migoni RL (2000) Atomic-level simulation of ferroelectricity in perovskite solid solutions. Appl Phys Lett 76:3986

    Google Scholar 

  67. Sepliarsky M, Wu Z, Asthagiri A, Cohen RE (2004) Atomistic model potential for \(\text{ PbTiO }_3\) and PMN by fitting first principles results. Ferroelectrics 301:55

    Google Scholar 

  68. Sepliarsky M, Asthagiri A, Phillpot S, Stachiotti M, Migoni R (2005) Atomic-level simulation of ferroelectricity in oxide materials. Curr Opin Solid State Mater Sci 9:107

    Google Scholar 

  69. Sepliarsky M, Cohen RE (2011) First-principles based atomistic modeling of phase stability in PMN-\(x\)PT. J Phys Condens Matter 23:435902

    Google Scholar 

  70. Gindele O, Kimmel A, Cain MG, Duffy D (2015) Shell model force field for lead zirconate titanate \(\text{ Pb }(\text{ Zr }_{{\rm 1x}}\text{ Ti }_{{\rm x}})\text{ O }_{3}\). J Phys Chem C 119:17784

    Google Scholar 

  71. Cao W (2008) Constructing Landau–Ginzburg–Devonshire type models for ferroelectric systems based on symmetry. Ferroelectrics 375:28

    Google Scholar 

  72. Zheludev I, Shuvalov L (1956) Ferroelectric phase transitions and symmetry of crystals. Kristallografiya 1:681

    Google Scholar 

  73. Vanderbilt D, Cohen MH (2001) Monoclinic and triclinic phases in higher-order Devonshire theory. Phys Rev B 63:094108

    Google Scholar 

  74. Rignanese G-M, Gonze X, Pasquarello A (2001) First-principles study of structural, electronic, dynamical, and dielectric properties of zircon. Phys Rev B 63:104305

    Google Scholar 

  75. Rignanese G-M, Detraux F, Gonze X, Pasquarello A (2001) First-principles study of dynamical and dielectric properties of tetragonal zirconia. Phys Rev B 64:134301

    Google Scholar 

  76. Zhao X, Vanderbilt D (2002) Phonons and lattice dielectric properties of zirconia. Phys Rev B 65:075105

    Google Scholar 

  77. Fennie CJ, Rabe KM (2003) Structural and dielectric properties of \(\text{ Sr }_2\text{ TiO }_{4}\) from first principles. Phys Rev B 68:184111

    Google Scholar 

  78. Liu Z, Mei Z, Wang Y, Shang S (2012) Nature of ferroelectric-paraelectric transition. Philos Mag Lett 92:399

    Google Scholar 

  79. Pedregosa F et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825

    Google Scholar 

  80. Shirane G, Jona F (1962) Ferroelectric crystals. Pergamon Press, Oxford

    Google Scholar 

  81. Nishimatsu T, Iwamoto M, Kawazoe Y, Waghmare UV (2010) First-principles accurate total energy surfaces for polar structural distortions of \(\text{ BaTiO }_3\), \(\text{ PbTiO }_3\), and \(\text{ SrTiO }_3\) : Consequences for structural transition temperatures. Phys Rev B 82:134106

    Google Scholar 

  82. Le Page Y, Saxe P (2002) Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys Rev B 65:104104

    Google Scholar 

  83. Piskunov S, Heifets E, Eglitis RI, Borstel G (2004) Bulk properties and electronic structure of \(\text{ SrTiO }_3\), \(\text{ BaTiO }_3\), \(\text{ PbTiO }_3\) perovskites: an ab initio HF/DFT study. Comput Mater Sci 29:165

    Google Scholar 

  84. Taib MFM, Yaakob MK, Hassan OH, Yahya MZA (2013) Structural, electronic, and lattice dynamics of \(\text{ PbTiO }_{3}\), \(\text{ SnTiO }_{3}\), and \(\text{ SnZrO }_{3}\): a comparative first-principles study. Integr Ferroelectr 142:119

    Google Scholar 

  85. Jiang Z et al (2016) Electrostriction coefficient of ferroelectric materials from ab initio computation. AIP Adv 6:065122

    Google Scholar 

  86. Samara GA (1971) Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: \(\text{ PbTiO }_3\) and \(\text{ BaTiO }_3\). Ferroelectrics 2:277

    Google Scholar 

  87. Wójcik K (1989) Electrical properties of \(\text{ PbTiO }_3\) single crystals doped with lanthanum. Ferroelectrics 99:5

    Google Scholar 

  88. Bhide V, Deshmukh K, Hegde M (1962) Ferroelectric properties of \(\text{ PbTiO }_3\). Physica 28:871

    Google Scholar 

  89. Bhide VG, Hegde MS, Deshmukh KG (1968) Ferroelectric properties of lead titanate. J Am Ceram Soc 51:565

    Google Scholar 

  90. Shirasaki S-I (1971) Defect lead titanates with diverse curie temperatures. Solid State Commun 9:1217

    Google Scholar 

  91. Shirane G, Hoshino S (1951) On the phase transition in lead titanate. J Phys Soc Jpn 6:265

    Google Scholar 

  92. Amin A, Cross LE, Newnham RE (1981) Calorimetric and phenomenological studies of the \(\text{ PbZrO }_{3}:\text{ PbTiO }_{3}\) system. Ferroelectrics 37:647

    Google Scholar 

  93. Remeika J, Glass A (1970) The growth and ferroelectric properties of high resistivity single crystals of lead titanate. Mater Res Bull 5:37

    Google Scholar 

  94. Chen L-Q (2008) Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J Am Ceram Soc 91:1835. https://doi.org/10.1111/j.1551-2916.2008.02413.x

    Google Scholar 

  95. Janolin P-E (2009) Strain on ferroelectric thin films. J Mater Sci 44:5025. https://doi.org/10.1007/s10853-009-3553-1

    Google Scholar 

  96. Sun F, Khassaf H, Alpay SP (2014) Strain engineering of piezoelectric properties of strontium titanate thin films. J Mater Sci 49:5978. https://doi.org/10.1007/s10853-014-8316-y

    Google Scholar 

  97. Reznitskii LA, Guzei AS (1978) Thermodynamic properties of alkaline earth titanates, zirconates, and hafnates. Russ Chem Rev 47:99

    Google Scholar 

  98. Wood EA (1951) Evidence for the noncubic high temperature phase of \(\text{ BaTiO }_3\). J Chem Phys 19:976

    Google Scholar 

  99. Yamada T, Kitayama T (1981) Ferroelectric properties of vinylidene fluoride-trifluoroethylene copolymers. J Appl Phys 52:6859

    Google Scholar 

  100. Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115

    Google Scholar 

  101. Nalwa H (1995) Ferroelectric polymers: chemistry: physics, and applications, plastics engineering. Marcel Dekker Inc., New York

    Google Scholar 

  102. Wang F, Landau D (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86:2050

    Google Scholar 

  103. Wang F, Landau D (2001) Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E 64:056101

    Google Scholar 

  104. Landau DP, Tsai S-H, Exler M (2004) A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling. Am J Phys 72:1294

    Google Scholar 

  105. Bin-Omran S, Kornev IA, Bellaiche L (2016) Wang-Landau Monte Carlo formalism applied to ferroelectrics. Phys Rev B 93:014104

    Google Scholar 

  106. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58:267

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support from the National Science Foundation (DMR 1309114). KCP is grateful to Neha Gadigi for help with coding and to S. Pamir Alpay, and Valentino R. Cooper for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishna Chaitanya Pitike or Serge M. Nakhmanson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1644 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitike, K.C., Khakpash, N., Mangeri, J. et al. Landau–Devonshire thermodynamic potentials for displacive perovskite ferroelectrics from first principles. J Mater Sci 54, 8381–8400 (2019). https://doi.org/10.1007/s10853-019-03439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03439-2

Navigation