Skip to main content
Log in

Genome size of alpine plants does not predict temperature resistance

  • Short Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Genome size of alpine plants is not related to their resistance against frost and heat.

Abstract

Genome size is a variable trait in angiosperms, and it was suggested that large genome size represents a constraint in stressful environments. We measured genome size and resistance to frost and heat in 89 species of plants from tropical and temperate alpine habitats. Genome size of the species, ranging from 0.49 pg to 25.8 pg across the entire dataset, was not related to either frost or heat resistance in either group of plants. Genome size does not predict resistance to extreme temperatures in alpine plants and is thus not likely to predict plant responses to climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

Data generated and analysed in this paper are available as Supplementary Information: Table S1.

Abbreviations

GS:

Genome size

2C:

The amount of DNA in an un-replicated somatic nucleus

References

  • Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora alpina. Haupt Verlag Bern, Switzerland

    Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986. https://doi.org/10.1111/j.1469-8137.2008.02528.x

    Article  PubMed  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200

    Article  Google Scholar 

  • Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci 10:225. https://doi.org/10.3389/fpls.2019.00225

    Article  PubMed  PubMed Central  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtis EM, Leigh A, Rayburg S (2012) Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Aust J Bot 60:471–483. https://doi.org/10.1071/BT11284

    Article  Google Scholar 

  • Denver Botanic Gardens (2018) Wild flowers of the Rocky Mountain region. Timber Press, Portland

    Google Scholar 

  • Dodsworth S, Leitch AR, Leitch IJ (2015) Genome size diversity in angiosperms and its influence on gene space. Curr Opin Genet Dev 35:73–78

    Article  CAS  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310

    Article  CAS  PubMed  Google Scholar 

  • Faizullah L, Morton JA, Hersch-Green EI et al (2021) Exploring environmental selection on genome size in angiosperms. Trends Plant Sci 26:1039–1049. https://doi.org/10.1016/j.tplants.2021.06.001

    Article  CAS  PubMed  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Amer Nat 160:712–726

    Article  CAS  Google Scholar 

  • García-Varela S, Rada F (2003) Freezing avoidance mechanism in juveniles of giant rosette plants of the genus Espeletia. Acta Oecol 24:165–167

    Article  Google Scholar 

  • Grime JP (1998) Plant classification for ecological purposes: is there a role for genome size? Ann Bot 82:117–120

    Article  Google Scholar 

  • Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153

    Article  Google Scholar 

  • Grime JP, Shacklock JML, Band SR (1985) Nuclear DNA content, shoot phenology and species co-existence in a limestone grassland community. New Phytol 100:435–445

    Article  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908. https://doi.org/10.1038/nature01843

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo O, Garcia S, Garnatje T et al (2015) Genome size in aquatic and wetland plants: fitting with the large genome constraint hypothesis with a few relevant exceptions. Plant Syst Evol 301:1927–1936. https://doi.org/10.1007/s00606-015-1205-2

    Article  Google Scholar 

  • Hodgson JG, Sharafi M, Jalili A et al (2010) Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann Bot 105:573–584. https://doi.org/10.1093/aob/mcq011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janáček J, Prášil I (1991) Quantification of plant frost injury by nonlinear fitting of an S-shaped function. CryoLetters 12:47–52

    Google Scholar 

  • Jin Y, Qian H (2019) V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42:1353–1359

    Article  Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Article  Google Scholar 

  • Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Ann Bot 101:759–766

    Article  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190. https://doi.org/10.1093/aob/mci011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Körner C (2003) Alpine plant life Functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82:85–94

    Article  CAS  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217. https://doi.org/10.1093/aob/mci014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon-García IV, Lasso E (2019) High heat tolerance in plants from the Andean highlands: implications for paramos in a warmer world. PLoS ONE 14:e0224218

    Article  Google Scholar 

  • Luteyn JL (1999) Páramos: a cheklist of plant diversity, geographical distribution, and botanical literature. Mem NY Bot Gard 84:1–278

    Google Scholar 

  • MacGillivray CW, Grime JP (1995) Genome size predicts frost resistance in British herbaceous plants. Implications for rates of vegetation response to global warming. Funct Ecol 9:320–325

    Article  Google Scholar 

  • Marcante S, Sierra-Almeia A, Spindelböck JP et al (2012) Frost as a limiting factor for recruitment and establishment of early developing stages in an alpine glacier foreland? J Veg Sci 23:858–868

    Article  Google Scholar 

  • Meyerson LA, Pyšek P, Lučanová M et al (2020) Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 11:e03145. https://doi.org/10.1002/ecs2.3145

    Article  Google Scholar 

  • Morgan HW, Westoby M (2005) The relationship between nuclear DNA content and leaf strategy in seed plants. Ann Bot 96:1321–1330

    Article  CAS  Google Scholar 

  • Orme D, Freckleton R, Thomas G et al (2013) The caper package: comparative analyses of phylogenetics and evolution in R. R Package Version 5(2):1–36

    Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  Google Scholar 

  • Pellicer J, Leitch IJ (2020) Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol 226:301–305. https://doi.org/10.1111/nph.16261

    Article  PubMed  Google Scholar 

  • Pellicer J, Powell RF, Leitch IJ (2021) The application of flow cytometry for estimating genome size, ploidy level endopolyploidy, and reproductive modes in plants. In: Besse P (ed) Molecular plant taxonomy Methods in molecular biology, vol 2222. Humana, New York, pp 325–361

    Chapter  Google Scholar 

  • Prášil I, Zámečník J (1998) The use of a conductivity measurement method for assessing freezing injury I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ Exp Bot 40:1–10

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org

  • Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the Ecuadorian paramos. Plant Ecol 131:173–192

    Article  Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J et al (2003) The evolution of plant functional variation: Traits, spectra, and strategies. Intern J Plant Sci 164:S143–S164. https://doi.org/10.1086/374368

    Article  Google Scholar 

  • Rosbakh S, Margreiter V, Jelcic B (2020) Seedlings of alpine species do not have better frost-tolerance than their lowland counterparts. Alp Bot 130:179–185

    Article  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plant. Responses and adaptations to freezing stress. Springer, Berlin

  • Sklenář P (2017) Seasonal variation of freezing resistance mechanisms in north-temperate alpine plants. Alp Bot 127:31–39

    Article  Google Scholar 

  • Sklenář P, Kučerová A, Macek P, Macková J (2010) Does plant height determine the freezing resistance in the páramo plants? Austral Ecol 35:929–934. https://doi.org/10.1111/j.1442-9993.2009.02104.x

    Article  Google Scholar 

  • Temsch EM, Koutecký P, Urfus T, Šmarda P, Doležel J (2021) Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytom Part A. https://doi.org/10.1002/cyto.a.24495

    Article  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature (a review). Cryobiology 41:2710–3279

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the Grant Agency of the Czech Republic (Project No. 17-12420S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Sklenář.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

425_2022_3935_MOESM1_ESM.xlsx

Supplementary file1 Table S1 List of examined alpine plant species ordered alphabetically within the temperate (coded by 1: Colorado, Krkonoše Mts. and the Alps study sites) and tropical (coded by 2: Ecuador and Bolivia study sites) regions. Genome size, maximum resistance to frost and heat, and growth form classification are provided. (XLSX 17 KB)

425_2022_3935_MOESM2_ESM.pdf

Supplementary file2 Fig. S1 Representative flow cytometry histograms of four selected species. a Erigeron pinnatisectus (Asteraceae, 2C = 4.4. pg). b Caltha leptosepala (Ranunculaceae, 2C = 7.2 pg). c Oritrophium peruvianum (Asteraceae, 2C = 8.8 pg). d Azorella biloba (Apiaceae, 2C = 12 pg). St, standard (a, b, c Solanum pseudocapsicum, 2C = 2.59 pg; d Bellis perennis, 2C = 3.38 pg), s, sample, G2, G2 phase of standard (PDF 430 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sklenář, P., Ptáček, J. & Klimeš, A. Genome size of alpine plants does not predict temperature resistance. Planta 256, 18 (2022). https://doi.org/10.1007/s00425-022-03935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03935-x

Keywords

Navigation