Skip to main content

Numerical Simulation of Fluid-Structure-Acoustic Interactions Models of Human Phonation Process

  • Chapter
  • First Online:
Fluids Under Control

Part of the book series: Advances in Mathematical Fluid Mechanics ((LNMFM))

  • 166 Accesses

Abstract

The human voice is a specific part of personality and the healthy voice is extremely important for a large number of people during their life. The patients with indisposed or impaired voice experience high psychological stress. This is why the understanding of principles of the phonation process is important. It can help to improve the treatment of people with voice disorders, to design suitable vocal exercises for singers and other voice professionals or to help with the development of new voice prothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Abgrall, H. Beaugendre, and C. Dobrzynski. An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques. Journal of Computational Physics, 257:83–101, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Alipour, C. Brucker, D. Cook, A. Gommel, M. Kaltenbacher, and W. Mattheus. Mathematical models and numerical schemes for the simulation of human phonation. Curr. Bioinform., 6(3):323–343, 2011.

    Article  Google Scholar 

  3. P. Angot, Ch.-H. Bruneau and P. Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. Numer Math, 81, 1999.

    Google Scholar 

  4. M. Arnela. Numerical production of vowels and diphthongs using finite element methods. PhD thesis, La Salle, Universitat Ramon Llull, Barcelona, 2014.

    Google Scholar 

  5. I. Babuška. The finite element method with penalty. Math. Comput., 27:221 – 228, 1973.

    Google Scholar 

  6. S. Badia, F. Nobile, and Ch. Vergara. Fluid-structure partitioned procedures based on Robin transmission conditions. Journal of Computational Physics, 227(14):7027–7051, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Bae and Y. J. Moon. Computation of phonation aeroacoustics by an INS/PCE splitting method. Computers & Fluids, 37:1332 – 1343, 2007.

    Google Scholar 

  8. K. J. Bathe. Finite element procedures. Prentice Hall, 1996.

    Google Scholar 

  9. Malte Braack and Piotr Boguslaw Mucha. Directional do-nothing condition for the Navier-Stokes equations. Journal of Computational Mathematics, 32(5):507–521, 2014.

    Google Scholar 

  10. M. Brdička, L. Samek, and B. Sopko. Continuum Mechanics. Academia, Prague, 2000.

    Google Scholar 

  11. Ch.-H. Bruneau and P. Fabrie. Effective downstream boundary conditions for incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 19(8):693–705, 1994.

    Article  MATH  Google Scholar 

  12. E. Burman, M. A. Fernández, and S. Frei. A Nitsche-based formulation for fluid-structure interactions with contact. ESAIM: M2AN, 54(2):531–564, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. G. Ciarlet. The Finite Element Methods for Elliptic Problems. North-Holland Publishing, 1979.

    Google Scholar 

  14. R. Codina, S. Badia, J. Baiges, and J. Principe. Chapter 2: Variational multiscale methods in computational fluid dynamics. In Erwin Stein, René de Borst, and Thomas J.R. Hughes, editors, Encyclopedia of Computational Mechanics Second Edition, page 1–28. John Wiley & Sons, 2017.

    Google Scholar 

  15. A. Curnier. Computational methods in solid mechanics. Springer, 1994.

    Book  MATH  Google Scholar 

  16. D. J. Daily and S. L. Thomson. Acoustically-coupled flow-induced vibration of a computational vocal fold model. Computers & Structures, 116:50–58, 2013.

    Article  Google Scholar 

  17. M. de Oliveira Rosa, J. C. Pereira, M. Grellet, and A. Alwan. A contribution to simulating a three-dimensional larynx model using the finite element method. The Journal of the Acoustical Society of America, 114(5):2893–2905, 2003.

    Article  Google Scholar 

  18. M. P. de Vries, H. K. Shutte, A. E. P. Veldman, and G.J. Verkerke. Glottal flow through a two-mass model: Comparison of Navier-Stokes solutions with simplified models. Journal of Acoust. Soc. Am., 111(4):1847–1853, 2002.

    Article  Google Scholar 

  19. E. H. Dowell and R. N. Clark. A modern course in aeroelasticity. Solid mechanics and its applications. Kluwer Academic Publishers, Dordrecht, Boston, 2004.

    MATH  Google Scholar 

  20. J. S. Drechsel and S. L. Thomson. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model. The Journal of the Acoustical Society of America, 123(6):4434–4445, 2008.

    Article  Google Scholar 

  21. R. Ewert and W. Schröder. Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics, 188(2):365–398, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Falk, S. Kniesburges, S. Schoder, B. Jakubass, P. Maurerlehner, M. Echternach, M. Kaltenbacher, and M. Döllinger. 3D-FV-FE aeroacoustic larynx model for investigation of functional based voice disorders. Frontiers in Physiology, 12(616985), 2021.

    Google Scholar 

  23. G. Fant. Acoustic theory of speech production. Mouton, Hague, 1960.

    Google Scholar 

  24. M. Feistauer. Mathematical Methods in Fluid Dynamics. Longman Scientific & Technical, Harlow, 1993.

    Google Scholar 

  25. M. Feistauer, P. Sváček, and J. Horáček. Numerical simulation of fsi problems of flow in vocal folds. In T. Bodnár, Giovanni Pl Galdi, and Š. Nečasová, editors, Fluid-Structure Interaction and Biomedical Applications, pages 321–394. Springer, 2014.

    Google Scholar 

  26. C. Förster. Robust methods for fluid-structure interaction with stabilised finite elements. PhD thesis, Institut fuer Baustatik und Baudynamik der Universitaet Stuttgart, 2007.

    Google Scholar 

  27. Ch. Förster, W. A. Wall, and E. Ramm. On the geometric conservation law in transient flow calculations on deforming domains. International Journal For Numerical Methods In Fluids, 50:1369–1379, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Gelhard, G. Lube, M. A. Olshanskii, and J.-H. Starcke. Stabilized finite element schemes with LBB-stable elements for incompressible flows. Journal of Computational and Applied Mathematics, 177:243–267, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  29. X. Gloerfelt and P. Lafon. Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number. Computers & Fluids, 37(4):388–401, 2008.

    Article  MATH  Google Scholar 

  30. P. Hájek, P. Švancara, J Horáček, and J. G. Švec. Numerical simulation of the self-oscillating vocal folds in interaction with vocal tract shaped for particular Czech vowels. Recent Global Research and Education: Technological Challenges, pages 317–323, 2017.

    Google Scholar 

  31. , J. C. Hardin and D. S. Pope. An acoustic/viscous splitting technique for computational aeroacoustics. Theoretical and Computational Fluid Dynamics, 6(5):323–340, 1994.

    Google Scholar 

  32. J. He and Z. Fu. Modal analysis. Elsevier Science & Technology, 2001.

    Google Scholar 

  33. J. G. Heywood, R. Rannacher, and S. Turek. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids, 22:325–352, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Horáček, A. M. Laukkanen, P. Šidlof, P. Murphy, and J. G. Švec. Comparison of acceleration and impact stress as possible loading factors in phonation. A computer modeling study. Folia Phoniatrica et Logopaedica, 61(3):137–145, 2009.

    Google Scholar 

  35. J. Horáček, P. Šidlof, and J. G. Švec. Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces. Journal of Fluids and Structures, 20(6):853–869, 2005.

    Article  Google Scholar 

  36. J. Horáček, V. V. Radolf, V. Bula, and J. Košina. Experimental modelling of phonation using artificial models of human vocal folds and vocal tracts. In V. Fuis, editor, Engineering Mechanics 2017, pages 382–385. Brno University of Technology, FME, 2017.

    Google Scholar 

  37. J. Horáček and J. G. Švec. Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. Journal of Fluids and Structures, 16(7):931 – 955, 2002.

    Google Scholar 

  38. J. Horáček and J. G. Švec. Instability boundaries of a vocal fold modelled as a flexibly supported rigid body vibrating in a channel conveying fluid. In ASME 2002 International Mechanical Engineering Congress and Exposition, pages 1043–1054. American Society of Mechanical Engineers, 2002.

    Google Scholar 

  39. M. S. Howe. Acoustics of fluid-structure interactions. Cambridge University Press, 1998.

    Book  MATH  Google Scholar 

  40. M. S. Howe. Theory of vortex sound. Cambridge University Press, 2002.

    Book  MATH  Google Scholar 

  41. T. J. Hughes. The finite element method: linear static and dynamic finite element analysis. Dover Publications, 2000.

    MATH  Google Scholar 

  42. T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Chapter 2: Multiscale and stabilized methods. In Erwin Stein, René de Borst, and Thomas J.R. Hughes, editors, Encyclopedia of Computational Mechanics, page 5–59. John Wiley & Sons, 2004.

    Google Scholar 

  43. K. Ishizaka and J. L. Flanagan. Synthesis of voiced sounds from a two-mass model of the vocal cords. The Bell System Technical Journal, 51:1233–1268, 1972.

    Article  Google Scholar 

  44. M. Kaltenbacher. Numerical simulation of mechatronic sensors and actuators: finite elements for computational multiphysics. Springer, 2015.

    Book  Google Scholar 

  45. M. Kaltenbacher, M. Escobar, S. Becker, and I. Ali. Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustic analogy. International Journal for Numerical Methods in Fluids, 63(9):1103–1122, 2010.

    MathSciNet  MATH  Google Scholar 

  46. M. Kaltenbacher, S. Marburg, A. Beck, C.-D. Munz, U. Langer, and M. Neumüller. Computational Acoustics. Springer, 2018.

    Book  Google Scholar 

  47. M. Kaltenbacher and S. Schoder. Physical Models for Flow: Acoustic Interaction. In T. Bodnár, Giovanni Pl Galdi, and Š. Nečasová, editors, Waves in Flows, pages 265–353. Birkhäuser, Cham, 2021.

    Google Scholar 

  48. M. Kaltenbacher, S. Zörner, and A. Hüppe. On the importance of strong fluid-solid coupling with application to human phonation. Progress in Computational Fluid Dynamics, 14(1):2–13, 2014.

    Article  MATH  Google Scholar 

  49. A. Kosík. Fluid-structure interaction. PhD thesis, Faculty of Mathematics and Physics, Charles University in Prague, 2016.

    Google Scholar 

  50. M. Lasota, P. Šidlof, M. Kaltenbacher, and S. Schoder. Impact of the sub-grid scale model in aeroacoustic simulation of human voice. Applied Sciences, 11, 2021.

    Google Scholar 

  51. M. J. Lighthill. On sound generated aerodynamically. I. General theory. In Proceedings of the Royal Society of London, volume 211, pages 564–587. The Royal Society, 1952.

    Google Scholar 

  52. G. Link, M. Kaltenbacher, M. Breuer, and M. Döllinger. A 2D finite element scheme for fluid-solid-acoustic interactions and its application to human phonation. Computation Methods in Applied Mechanical Engineering, 198:3321–3334, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. A. Lodermeyer. A laser-based technique to evaluate sound generation during phonation. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2019.

    Google Scholar 

  54. H. Luo, R. Mittal, and S. A. Bielamowicz. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method. The Journal of the Acoustical Society of America, 126(2):816–824, 2009.

    Article  Google Scholar 

  55. H. Luo, R. Mittal, X. Zheng, S.A. Bielamowicz, R.J. Walsh, and J.K. Hahn. An immersed boundary method for flow-structure interaction in biological systems with application to phonation. J. Comput. Phys., 227(22):9303–9332, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Marburg and B. Nolte. Computational acoustics of noise propagation in fluids: finite and boundary element methods, volume 578. Springer, 2008.

    Book  Google Scholar 

  57. R. Mittal, B. D. Erath, and M. W. Plesniak. Fluid dynamics of human phonation and speech. Annual Review of Fluid Mechanics, 45:437–467, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Nomura and T. J. R. Hughes. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Computer Methods in Applied Mechanics and Engineering, 95:115–138, 1992.

    Article  MATH  Google Scholar 

  59. P. Pořízková, K. Kozel, and J. Horáček. Simulation of unsteady compressible flow in a channel with vibrating walls-influence of the frequency. Computers & Fluids, 46(1):404–410, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Sadeghi, S. Kniesburges, M. Kaltenbacher, A. Schützenberger, and M. Döllinger. Computational models of laryngeal aerodynamics: Potentials and numerical costs. Journal of Voice, 33(4):385–400, 2019.

    Article  Google Scholar 

  61. R. C. Scherer, D. Shinwari, K. J. De Witt, C. Zhang, B. R. Kucinschi, and A. A. Afjeh. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. Journal of the Acoustical Society of America, 109:1616–1630, 2001.

    Article  Google Scholar 

  62. L. Schickhofer, J. Malinen, and M. Mihaescu. Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI. The Journal of the Acoustical Society of America, 145(4):2049–2061, 2019.

    Article  Google Scholar 

  63. S. Schoder, M. Weitz, P. Maurerlehner, A. Hauser, S. Falk, S. Kniesburges, M. Döllinger, and M. Kaltenbacher. Hybrid aeroacoustic approach for the efficient numerical simulation of human phonation. The Journal of the Acoustical Society of America, 147:1179–1194, 2020. https://doi.org/10.1121/10.0000785.

    Article  Google Scholar 

  64. S. Schoder, P. Maurerlehner, A. Wurzinger, A. Hauser, S. Falk, S. Kniesburges, M. Döllinger, and M. Kaltenbacher. Aeroacoustic sound source characterization of the human voice production-perturbed convective wave equation. Applied Sciences, 11(6):2614, 2021.

    Google Scholar 

  65. R. Schwarze, W. Mattheus, J. Klostermann, and C. Brücker. Starting jet flows in a three-dimensional channel with larynx-shaped constriction. Computers & Fluids, 48(1):68–83, 2011.

    Article  MATH  Google Scholar 

  66. J.H. Seo and R. Mittal. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys., 230(4):1000–1019, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  67. P. Šidlof, O. Doaré, O. Cadot, and A. Chaigne. Measurement of flow separation in a human vocal folds model. Exp Fluids, 51(1):123–136, 2011.

    Article  Google Scholar 

  68. B. H. Story. Physiologically-based speech simulation using an enhanced wave-reflection model of the vocal tract. PhD thesis, University of Iowa, 1995.

    Google Scholar 

  69. B. H. Story and I. R. Titze. Parameterization of vocal tract area functions by empirical orthogonal modes. Journal of Phonetics, 26(3):223 – 260, 1998.

    Google Scholar 

  70. B. H. Story, I. R. Titze, and E. A. Hoffman. Vocal tract area functions from magnetic resonance imaging. The Journal of the Acoustical Society of America, 100(1):537–554, 1996.

    Article  Google Scholar 

  71. J. Suh and S. H. Frankel. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model. The Journal of the Acoustical Society of America, 121(6):3728–3739, 2007.

    Article  Google Scholar 

  72. P. Sváček. Numerical solution of fluid-structure interaction problems with considering of contacts. Acta Polytechnica, 61(SI):155–162, 2021.

    Google Scholar 

  73. P. Sváček. On mathematical modelling of flow induced vocal folds vibrations during phonation. In F. Yilmaz, A. Queiruga-Dios, M.J. Santos Sánchez, D. Rasteiro, Gayoso Martínez, and J. V., Martín Vaquero, editors, Mathematical Methods for Engineering Applications. ICMASE 2021. Springer Proceedings in Mathematics & Statistics, volume 384. Springer, Cham, 2022.

    Google Scholar 

  74. P. Sváček and J. Horáček. Numerical simulation of glottal flow in interaction with self oscillating vocal folds: comparison of finite element approximation with a simplified model. Communications in Computational Physics, 12(3):789–806, 2012.

    Article  Google Scholar 

  75. P. Sváček and J. Horáček. Finite element approximation of flow induced vibrations of human vocal folds model: Effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset. Applied Mathematics and Computation, 319:178–194, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  76. P. Sváček and J. Horáček. FE numerical simulation of incompressible airflow in the glottal channel periodically closed by self-sustained vocal folds vibration. Journal of Computational and Applied Mathematics, 393:113529, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  77. P. Šidlof. Large eddy simulation of airflow in human vocal folds. In D. Šimurda and T. Bodnár, editors, Proceedings Topical Problems of Fluid Mechanics 2015, pages 183–192, 2015.

    Google Scholar 

  78. P. Šidlof, S. Zörner, and A Hüppe. A hybrid approach to computational aeroacoustics of human voice production. Biomechanics and Modeling in Mechanobiology, 14:473–488, 2015.

    Google Scholar 

  79. C. Tao, Y. Zhang, D. G. Hottinger, and J. J. Jiang. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. The Journal of the Acoustical Society of America, 122(4):2270–2278, 2007.

    Article  Google Scholar 

  80. S. Thomson, L. Mongeau, and S. Frankel. Aerodynamic transfer of energy to the vocal folds. J Acoust Soc Am, 118(3 Pt 1):1689–1700, 2005.

    Article  Google Scholar 

  81. I. R. Titze. Physiologic and acoustic differences between male and female voices. Journal of the Acoustical Society of America, 85(4):1699–1707, 1989.

    Article  Google Scholar 

  82. I. R. Titze. The Myoelastic Aerodynamic Theory of Phonation. National Center for Voice and Speech, U.S.A., 2006.

    Google Scholar 

  83. I. R. Titze. Nonlinear source–filter coupling in phonation: Theory. The Journal of the Acoustical Society of America, 123(4):1902–1915, 2008.

    Article  Google Scholar 

  84. Ingo R. Titze. Principles of voice production. Prentice-Hall Inc, 1994.

    Google Scholar 

  85. J. Valášek. Numerical Simulation of Fluid-Structure-Acoustic Interaction in Human Phonation. PhD thesis, Faculty of Mechanical Engineering, Czech Technical University in Prague, 2021.

    Google Scholar 

  86. J. Valášek, M. Kaltenbacher, and P. Sváček. On the application of acoustic analogies in the numerical simulation of human phonation process. Flow Turbulence Combust, 102:129–143, 2019.

    Article  Google Scholar 

  87. J. Valášek, P. Sváček, and J. Horáček. On suitable inlet boundary conditions for fluid-structure interaction problems in a channel. Applications of Mathematics, 64(2):225–251, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  88. T. Vampola, J. Horáček, J. Vokářál, and L. Černỳ. FE modeling of human vocal tract acoustics. Part II: Influence of velopharyngeal insufficiency on phonation of vowels. Acta Acustica United with Acustica, 94(3):448–460, 2008.

    Google Scholar 

  89. T. Vampola, J. Horáček, and J. G. Švec. FE modeling of human vocal tract acoustics. Part I: Production of Czech vowels. Acta Acustica united with Acustica, 94(3):433–447, 2008.

    Google Scholar 

  90. G. Verkerke and S. Thomson. Sound-producing voice prostheses: 150 years of research. Annual Review of Biomedical Engineering, 16(1):215–245, 2014.

    Article  Google Scholar 

  91. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, 1993.

    Google Scholar 

  92. Q. Xue, X. Zheng, R. Mittal, and S. Bielamowicz. Subject-specific computational modeling of human phonation. J. Acoust. Soc. Am., 135:1445–1456, 2014.

    Article  Google Scholar 

  93. Z. Yang and D. J. Mavriplis. Unstructured dynamic meshes with higher-order time integration schemes for the unsteady Navier-Stokes equations. In 43rd AIAA Aerospace Sciences Meeting, page 13 pp., Reno NV, January 2005. AIAA Paper 2005-1222.

    Google Scholar 

  94. C. Zhang, W. Zhao, S. H. Frankel, and L. Mongeau. Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds. The Journal of the Acoustical Society of America, 112(5):2147–2154, 2002.

    Article  Google Scholar 

  95. W. Zhao, C. Zhang, S. H. Frankel, and L. Mongeau. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms. The Journal of the Acoustical Society of America, 112(5):2134–2146, 2002.

    Article  Google Scholar 

  96. S. Zörner, M. Kaltenbacher, and M. Döllinger. Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process. Computers & Fluids, 86:133–140, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  97. S. Zörner and M. Kaltenbacher. Fluid-structure-acoustic interaction, algorithms and implementations using the finite element method. In Proceedings of ECCOMAS 2010, page 28 pp, 2010.

    Google Scholar 

  98. S. Zörner, P. Šidlof, A. Hüppe, and M. Kaltenbacher. Flow and acoustic effects in the larynx for varying geometries. Acta Acustica united with Acustica, 102(2):257–267, 2016.

    Article  Google Scholar 

Download references

Acknowledgements

The work of P.S. was supported from European Regional Development Fund Project “Center for Advanced Applied Science” No. CZ.02.1.01/0.0/0.0/16-019/0000778. J.V. was supported by the Praemium Academiae of prof. Š. Nečasová and by the Research Plan RVO:67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Sváček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sváček, P., Valášek, J. (2023). Numerical Simulation of Fluid-Structure-Acoustic Interactions Models of Human Phonation Process. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds) Fluids Under Control. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-27625-5_11

Download citation

Publish with us

Policies and ethics