Skip to main content
Log in

Spontaneous development of rotating inertial gravity wave inside the cylindrical tank with combined in- and outflow

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

A new phenomenon of the spontaneous development of the rotating inertial gravity wave inside the rigid cylindrical tank has been observed. The experimental set-up combines both the inflow and outflow. Three regimes of the flow inside the tank have been disclosed for the fixed rate of the liquid height change: a) nonrotating flow, b) nonrotating flow with the ripple localized to the tank's wall, and c) emergence of the rotating inertial gravity wave. The rotating inertial gravity wave forces the fluid to rotate in the opposite direction. Each of these regimes is realized in some ranges of the outlet diameters and liquid heights, and the maps of these regimes are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Childs, Rotating flow, Elsevier, Oxford, UK, 2011.

    Google Scholar 

  2. S.V. Alekseenko, V.E. Nakoryakov, and B.G. Pokusaev, Wave Flow of Liquid Films, Begell House, New York, USA, 1994.

    Google Scholar 

  3. E.L. Houghton and P.W. Carpenter, Aerodynamics, Butterworth-Heinermann, Oxford, UK, 2003.

    Google Scholar 

  4. G.K. Vallis, Atmospheric and oceanic fluid dynamics: Fundamentals and Large-Scale Circulation, Cambridge University Press, Cambridge, UK, 2006.

    Book  Google Scholar 

  5. T.E. Stokes, G.C. Hocking, and L.K. Forbes, Unsteady free-surface flow induced by a line sink, J. Engng. Math. 2003, Vol. 47, P. 137–160.

    Article  MathSciNet  MATH  Google Scholar 

  6. C.H. Sohn, M.G. Ju, and B.H.L. Gowda, Draining from the cylindrical tanks with Vane-type suspensors — A PIV study, J. Visualization, 2009, Vol. 12, P. 347–360.

    Article  Google Scholar 

  7. J.D. Sherwood, Optimal shapes for best draining, Phys. Fluids, 2009, Vol. 21, P. 113102-1–7.

    ADS  Google Scholar 

  8. K.B. Haugen and P.A. Tyvand, Free-surface evaluation due to an impulsive bottom sink at uniform depth, Phys. Fluids, 2003, Vol. 15, P. 742-1–10.

    MathSciNet  ADS  Google Scholar 

  9. A. Andersen, T. Bohr, B. Stenum, J.J. Rasmussen, and B. Lautrup, Anatomy of bathtub vortex, Phys. Rev. Lett., 2003, Vol. 91, P. 104502-1–4.

    Article  ADS  Google Scholar 

  10. P.A. Tyvand and K.B. Haugen, An impulsive bathtub vortex, Phys. Fluids, 2005, Vol. 17, P. 062105-1–8.

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Shapiro, Bath-tub vortex, Nature, 1962, Vol. 196, P. 1080–1081.

    Article  ADS  Google Scholar 

  12. L.M. Trefethen, R.W. Bilger, P.T. Fink, R.E. Luxton, and R.I. Tanner, The bath-tub vortex in the southern hemisphere, Nature, 1965, Vol. 207, P. 1084–1085.

    Article  ADS  Google Scholar 

  13. L. Bohling, A. Andersen, and D. Fabre, Structure of a steady drain-hole vortex in a viscous fluid, J. Fluid Mech., 2010, Vol. 656, P. 177–188.

    Article  MathSciNet  ADS  Google Scholar 

  14. C.H. Sohn, M.G. Ju, and B.H.L. Gowda, PIV study of vortexing during draining from square tanks, J. Mech. Sci. and Tech., 2010, Vol. 24, P. 951–960.

    Article  Google Scholar 

  15. Y.A. Stepanyants and G.H. Yeoh, Stationary bathtub vortices and a critical regime of liquid discharge, J. Fluid. Mech., 2008, Vol. 604, P. 77–98.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. T.E. Stokes, G.C. Hocking, and L.K. Forbes, Unsteady free surface flow induced by a line sink in a fluid of finite depth, Computers & Fluids, 2008, Vol. 37, P. 236–249.

    Article  MathSciNet  MATH  Google Scholar 

  17. B.T. Lubin and G.S. Springer, The formation of a dip on the surface of a liquid draining from a tank, J. Fluid. Mech., 1967, Vol. 47, P. 385–390.

    Article  ADS  Google Scholar 

  18. Q.N. Zhou and W.P. Graebel, Axisymmetric draining of a cylindrical tank with a free surface, J. Fluid. Mech., 1990, Vol. 221, P. 511–532.

    Article  MATH  ADS  Google Scholar 

  19. M. Xue and D.K.P. Yue, Nonlinear free-surface flow due to an impulsively started submerged point sink, J. Fluid. Mech., 1998, Vol. 364, P. 325–347.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. J.W. Miles, Free surface oscillations in a rotating fluid, Phys. Fluids, 1959, Vol. 2, P. 297–304.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, 2nd ed., Pergamon, Oxford, UK, 1987.

    MATH  Google Scholar 

  22. A.F. Lovegrove, P.L. Read, and C.J. Richards, Generation of inertia-gravity waves in a baroclinically unstable fluid. Q.J.R. Meteorol. Soc., 2000, Vol. 126, P. 3233–3254.

    Article  ADS  Google Scholar 

  23. H.F. Bauer, Theory of fluid oscillations in partially filled cylindrical containers, MTP-AERO-62-1, NASA Marshall Space Flight Center, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Fedorchenko.

Additional information

We gratefully acknowledge the support by the GACR (P101/11/J019 and P107/10/0824), the Research Plan of the Institute of Thermomechanics of AS CR, v.v.i., No. AV0Z20760514, the Pilot project of the Institute of Thermomechanics of AS CR, v.v.i., No. 902117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorchenko, A.I., Stachiv, I. & Trávníček, Z. Spontaneous development of rotating inertial gravity wave inside the cylindrical tank with combined in- and outflow. Thermophys. Aeromech. 20, 133–138 (2013). https://doi.org/10.1134/S0869864313020017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864313020017

Key words

Navigation