Skip to main content
Log in

An ultrasonic internal friction study of ultrafine-grained AZ31 magnesium alloy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Internal friction in ultrafine-grained AZ31 magnesium alloy is investigated by resonant ultrasound spectroscopy. It is shown that the internal friction significantly increases at elevated temperatures (\({\gtrsim }100\) °C), and that this increase can be attributed to grain boundary sliding (GBS). The evolution of this phenomenon with grain refinement is studied by comparing the results obtained for an extruded material and for materials after additional one, two, and four passes of equal channel angular pressing. It is observed that the activation energy for diffusive GBS significantly decreases with decreasing grain size, and so does also the threshold temperature above which this internal friction mechanism is dominant. The results prove that the ultrafine-grained AZ31 alloys exhibit diffusive GBS at temperatures close to the ambient temperature, which is an interesting finding with respect to the possible applications of these alloys in superplastic forming technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Let us point out that in the high-frequency limit the \(Q^{-1}(T)\) does not exhibit any peak behavior common for low-frequency (\({\lesssim}\) 10 Hz) measurements, cf. Fan et al.[22, 23].

References

  1. Valiev RZ, Ismalgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  2. Yamashita A, Horita Z, Langdon TG (2001) Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci Eng A 300:142–147

    Article  Google Scholar 

  3. Kang SH, Lee YS, Lee JH (2008) Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics. J Mater Process Technol 201:436–440

    Article  Google Scholar 

  4. Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater 45:89–94

    Article  Google Scholar 

  5. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  6. Koike J, Ohyama R, Kobayashi T, Suzuki M, Maruyama K (2003) Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater Trans 44:445–451

    Article  Google Scholar 

  7. Tan JC, Tan MJ (2003) Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg3Al1Zn alloy sheet. Mater Sci Eng A 339:81–89

    Article  Google Scholar 

  8. Panicker R, Chokshi AH, Mishra RK, Verma R, Krajewski PE (2009) Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy. Acta Mater 57:3683–3693

    Article  Google Scholar 

  9. Bussiba A, Ben Artzy A, Shtechman A, Ifergan S, Kupiec M (2001) Grain refinement of AZ31 and ZK60 Mg alloys towards superplasticity studies. Mater Sci Eng A 302:56–62

    Article  Google Scholar 

  10. Koike J (2005) Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall Mater Trans A 36:1689–1696

    Article  Google Scholar 

  11. Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruayama K, Higashi K (2003) The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater 51:2055–2065

    Article  Google Scholar 

  12. Watanabe H, Mukai T, Sugioka M, Ishikawa K (2004) Elastic and damping properties from room temperature to 673 K in an AZ31 magnesium. Scripta Mater 51:291–295

    Article  Google Scholar 

  13. Mosher DR, Raj R (1974) Use of the internal friction technique to measure rates of grain boundary sliding. Acta Metall 22:1469–1474

    Article  Google Scholar 

  14. Pezzotti G, Kleebe HJ, Ota K (1998) Grain-boundary viscosity of polycrystalline silicon carbides. J Am Ceram Soc 81(12):3293–3299

    Article  Google Scholar 

  15. Watanabe H, Owashi A, Uesugi T, Takigawa Y, Higashi K (2011) Grain boundary relaxation in fine-grained magnesium solid solutions. Philos Mag 91:4158–4171

    Article  Google Scholar 

  16. Granato AV, Lücke K (1956) Theory of mechanical damping due to dislocations. J Appl Phys 27:789–805

    Article  Google Scholar 

  17. Zhang Z, Zeng X, Ding W (2005) The influence of heat treatment on damping response of AZ91D magnesium alloy. Mater Sci Eng A 392:150–155

    Article  Google Scholar 

  18. Riehemann W, Abed El-Al F (2000) Influence of ageing on the internal friction of magnesium. J Alloys Compd 310:127–130

    Article  Google Scholar 

  19. No ML, Oleaga A, Esnouf C (1990) Internal friction at medium temperatures in high purity magnesium. Phys Statu Solidi (A) 120:419–427

    Article  Google Scholar 

  20. Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New York

    Google Scholar 

  21. Ivleva TV, Göken J, Golovin IS, Zuberova Z, Maikranz-Valentin M, Steinhoff K (2008) Damping in AZ31 ECAP-processed alloy. Solid State Phenom 137:181–188

    Article  Google Scholar 

  22. Fan GD, Zheng MY, Hu XS, Xu C, Wu K, Golovin IS (2013) Effect of heat treatment on internal friction in ECAP processed commercial pure Mg. J Alloys Compd 549:38–45

    Article  Google Scholar 

  23. Fan GD, Zheng MY, Hu XS, Xu C, Wu K, Golovin IS (2012) Improved mechanical property and internal friction of pure Mg processed by ECAP. Mater Sci Eng A 556:588–594

    Article  Google Scholar 

  24. Migliori A, Sarrao JL, Visscher WM, Bell TM, Lei M, Fisk Z et al (1993) Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Phys B 183:1–24

    Article  Google Scholar 

  25. Leisure RG, Willis FA (1997) Resonant ultrasound spectroscopy. J Phys Condens Matter 9:6001–6029

    Article  Google Scholar 

  26. Ogi H, Sato K, Asada T, Hirao M (2002) Complete mode identification for resonance ultrasound spectroscopy. J Acoust Soc Am 112:2553–2557

    Article  Google Scholar 

  27. Sedlák P, Seiner H, Zídek J, Janovská M, Landa M (2014) Determination of all 21 independent elastic coefficients of generally anisotropic solids by resonant ultrasound spectroscopy: benchmark examples. Exp Mech 54:1073–1085

    Article  Google Scholar 

  28. Sumino Y, Ohno I, Goto T, Kumazawa M (1976) Measurement of elastic constants and internal frictions on single-crystal MgO by rectangular parallelepiped resonance. J Phys Earth 24:263–273

    Article  Google Scholar 

  29. Leisure RG, Foster K, Hightower JE, Agosta DS (2004) Internal friction studies by resonant ultrasound spectroscopy. Mater Sci Eng A 370:34–40

    Article  Google Scholar 

  30. Bernard S, Grimal Q, Laugier P (2014) Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials. J Acoust Soc Am 135:2601–2613

    Article  Google Scholar 

  31. Seiner H, Sedlák P, Koller M, Landa M, Ramírez C, Osendi MI, Belmonte M (2013) Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites. Compos Sci Technol 75:93–97

    Article  Google Scholar 

  32. Truell R, Elbaum C, Chick B (1969) Ultrasonic methods in solid state physics. Academic Press, New York

    Google Scholar 

  33. Hwang S, Nishimura C, McCormick PG (2001) Compressive mechanical properties of Mg–Ti–C nanocomposite synthesised by mechanical milling. Scripta Mater 44:1507

    Article  Google Scholar 

  34. Janeček M, Yi S, Král R, Vrátná J, Kainer KU (2010) Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP. J Mater Sci 45:4665–4671. doi:10.1007/s10853-010-4675-1

    Article  Google Scholar 

  35. Janeček M, Čížek J, Gubicza J, Vrátná J (2012) Microstructure and dislocation density evolutions in MgAlZn alloy processed by severe plastic deformation. J Mater Sci 47:7860–7869. doi:10.1007/s10853-012-6538-4

    Article  Google Scholar 

  36. Stráská J, Janeček M, Čížek J, Stráský J, Hadzima B (2014) Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EXECAP). Mater Charact 94:69–79

    Article  Google Scholar 

  37. Vrátná J, Hadzima B, Bukovina M, Janeček M (2013) Room temperature corrosion properties of AZ31 magnesium alloy processed by extrusion and equal channel angular pressing. J Mater Sci 48:45104516. doi:10.1007/s10853-013-7173-4

    Google Scholar 

  38. Seiner H, Bodnárová L, Sedlák P, Janeček M, Srba O, Král R et al (2010) Application of ultrasonic methods to determine elastic anisotropy of polycrystalline copper processed by equal-channel angular pressing. Acta Mater 58:235–247

    Article  Google Scholar 

  39. Lebedev AB, Burenko YuA, Romanov AE, Kopylov VI, Filonenko VP, Gryaznov VG (1995) Softening of the elastic modulus in submicrocrystalline copper. Mater Sci Eng A 203:165

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Czech Science Foundation (Project No. GA13-13616S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanuš Seiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koller, M., Sedlák, P., Seiner, H. et al. An ultrasonic internal friction study of ultrafine-grained AZ31 magnesium alloy. J Mater Sci 50, 808–818 (2015). https://doi.org/10.1007/s10853-014-8641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8641-1

Keywords

Navigation