Skip to main content
Log in

Approximation of a Solution to the Euler Equation by Solutions of the Navier–Stokes Equation

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We show that a smooth solution u 0 of the Euler boundary value problem on a time interval (0, T 0) can be approximated by a family of solutions of the Navier–Stokes problem in a topology of weak or strong solutions on the same time interval (0, T 0). The solutions of the Navier–Stokes problem satisfy Navier’s boundary condition, which must be “naturally inhomogeneous” if we deal with the strong solutions. We provide information on the rate of convergence of the solutions of the Navier–Stokes problem to the solution of the Euler problem for ν → 0. We also discuss possibilities when Navier’s boundary condition becomes homogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos C.: Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40, 769–790 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beirão da Veiga H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip type boundary conditions. Adv. Diff. Equ. 9(9–10), 1079–1114 (2004)

    MATH  Google Scholar 

  3. Beirão da Veiga H.: On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions. Comm. Pure Appl. Math. 58, 552–577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga H.: Remarks on the Navier–Stokes evoltion equations under slip type boundary conditions with linear friction. Port. Math. 64, 377–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga H., Crispo F.: Sharp inviscid limit results under Navier type boundary condition. An L p theory. J. Math. Fluid Mech. 12(3), 397–411 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bellout H., Neustupa J.: A Navier–Stokes approximation of the 3D Euler equation with the zero flux on the boundary. J. Math. Fluid Mech. 10, 531–553 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bellout H., Neustupa J., Penel P.: On a ν-continuous family of strong solutions to the Euler or Navier–Stokes equations with the Navier–type boundary condition. Discrete Contin. Dyn. Syst. Ser. A 27(4), 1353–1373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berselli L.C., Romito M.: On the existence and uniqueness of weak solutions for a vorticity seeding model. SIAM J. Math. Anal. 37(6), 1780–1799 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourguignon J.P., Brezis H.: Remarks on the Euler equation. J. Func. Anal. 15, 341–363 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen G.Q., Osborne D., Qian Z.: The Navier–Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries. Acta Math. Sci. 29, 919–948 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Chen G.Q., Qian Z.: A study of the Navier–Stokes equations with the kinematic and Navier boundary conditions. Indiana Univ. Math. J. 59(2), 721–760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clopeau T., Mikelič A., Robert R.: On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary condition. Nonlinearity 11, 1625–1636 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Constantin P., Foias C.: Navier–Stokes equations. The University of Chicago Press, Chicago (1989)

    Google Scholar 

  14. Constantin P., Wu J.: Inviscid limit for vortex patches. Nonlinearity 8, 735–742 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Constantin P., Wu J.: The inviscid limit for non-smooth vorticity. Indiana Univ. Math. J. 45, 67–81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Linearized steady problems, vol. 1, Springer, New York (1994)

  17. Grisvart P.: Elliptic problems in nonsmooth domains. Pitman Publishing Inc., Boston (1985)

    Google Scholar 

  18. Héron B.: Quelques proprietes des applications de trace dans des espaces de champs de vecteurs a divergence nulle. Comm. PDE 6, 1301–1334 (1981)

    Article  MATH  Google Scholar 

  19. Hoffman, J., Johnson, C.: Separation in slightly viscous turbulent flow. Preprint, submitted to Physics of Fluids (2009)

  20. Iftimie D., Planas G.: Inviscid limit for the Navier–Stokes equations with Navier friction boundary condition. Nonlinearity 9, 899–918 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  21. Itoh S., Tanaka N., Tani A.: The initial value problem for the Navier–Stokes equations with general slip boundary condition in Hlder spaces. J. Math. Fluid Mech. 5, 275–301 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  22. Kato, T.: Remarks on zero viscosity limit for non-stationary Navier–Stokes flows with boundary. Chern, S.S. (ed.) Seminar on nonlinear PDE, MSRI, Berkeley (1984)

  23. Kelliher J.P.: Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38, 210–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lopes Filho M.C., Nussenzveig Lopes H.J., Planas G.: On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36, 1130–1141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mahalov A., Nicolaenko B., Bardos C., Golse F.: Non blow-up of the 3D Euler equations for a class of three-dimensional initial data in cylindrical domains. Methods Appl. Anal. 11, 605–634 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Masmoudi N.: The Euler limit of the Navier–Stokes equations and rotating fluids with boundary. Arch. Rat. Mech. Anal. 142, 375–394 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Masmoudi, N., Rousset, F.: Uniform regularity for the Navier–Stokes equation with Navier boundary condition. To appear in Arch. Rat. Mech. Anal. doi:10.1007/s00205-011-0456-5

  28. Mucha P.B.: On Navier–Stokes equations with slip boundary conditions in an infinite pipe. Acta Appl. Math. 76, 1–15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neustupa J., Penel P.: A weak solvability of the Navier–Stokes equation with Navier’s boundary condition around a ball striking the wall. In: Rannacher, R., Sequeira, A. (eds) Advances in mathematical fluid mechanics, pp. 385–408. Springer, Berlin (2010)

  30. Neustupa J., Penel P.: A weak solvability of the Navier–Stokes system with Navier’s boundary condition around moving and striking bodies. Preprint (Mathematics Institute, Czech Academy of Sciences) (2009)

  31. Neustupa J., Penel P.: Local in time strong solvability of the non-steady Navier–Stokes equations with Navier’s boundary condition and the question of the inviscid limit. Comptes Rendus Math. 348, 1093–1097 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sohr H.: The Navier–Stokes equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Basel (2001)

    MATH  Google Scholar 

  33. Solonnikov, V.A., Ščadilov, V.E.: A certain boundary value problem for the stationary system of Navier–Stokes equations. In: Boundary value problems of mathematical physics 8, Trudy Math. Inst. Steklov 125 (1973), 196–210 (Russian), (English translation: proceedings of the Steklov Institute of Mathematics 125, 186–199 (1973))

  34. Swann H.: The convergence with vanishing viscosity of non-stationary Navier–Stokes flow to ideal flow in \({\mathbb{R}^3}\) . Trans. Amer. Math. Soc. 157, 373–397 (1971)

    MathSciNet  MATH  Google Scholar 

  35. Temam R.: On the Euler equations of incompressible perfect fluids. J. Func. Anal. 20, 32–43 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa.

Additional information

Communicated by G. P. Galdi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neustupa, J., Penel, P. Approximation of a Solution to the Euler Equation by Solutions of the Navier–Stokes Equation. J. Math. Fluid Mech. 15, 179–196 (2013). https://doi.org/10.1007/s00021-012-0125-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-012-0125-y

Mathematics Subject Classification (2000)

Keywords

Navigation