Počet záznamů: 1  

Chlorophyll f synthesis by a super-rogue photosystem II complex

  1. 1.
    SYSNO ASEP0524548
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevChlorophyll f synthesis by a super-rogue photosystem II complex
    Tvůrce(i) Trinugroho, J.P. (GB)
    Bečková, Martina (MBU-M) RID
    Shao, S.X. (GB)
    Yu, J.F. (GB)
    Zhao, Z.Y. (GB)
    Murray, J. W. (GB)
    Sobotka, Roman (MBU-M) RID, ORCID
    Komenda, Josef (MBU-M) RID, ORCID
    Nixon, P.J. (GB)
    Zdroj.dok.Nature Plants - ISSN 2055-026X
    Roč. 6, č. 3 (2020), s. 238-244
    Poč.str.7 s.
    Jazyk dok.eng - angličtina
    Země vyd.GB - Velká Británie
    Klíč. slovainner antenna cp47 ; global food demand ; d1 protein
    Vědní obor RIVEE - Mikrobiologie, virologie
    Obor OECDMicrobiology
    CEPGX19-29225X GA ČR - Grantová agentura ČR
    LO1416 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    Způsob publikováníOmezený přístup
    Institucionální podporaMBU-M - RVO:61388971
    UT WOS000519577200015
    EID SCOPUS85081990201
    DOI10.1038/s41477-020-0616-4
    AnotaceCertain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation(1,2). The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy(3). Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. (4)) or super-rogue D1 (ref. (5)), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. (4,6)). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.
    The cyanobacterial chlorophyll, Chl f, absorbs far-red light. Mutation of two residues in a subunit of photosystem II converts it to a Chl f synthase. This 'super-rogue' photosystem might improve photosynthetic efficiency in low light.
    PracovištěMikrobiologický ústav
    KontaktEliška Spurná, eliska.spurna@biomed.cas.cz, Tel.: 241 062 231
    Rok sběru2021
    Elektronická adresahttps://www.nature.com/articles/s41477-020-0616-4
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.