Počet záznamů: 1  

Asymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime

  1. 1.
    SYSNO ASEP0485868
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevAsymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime
    Tvůrce(i) Feireisl, Eduard (MU-W) RID, SAI, ORCID
    Medviďová-Lukáčová, M. (DE)
    Nečasová, Šárka (MU-W) RID, SAI, ORCID
    Novotný, A. (FR)
    She, Bangwei (MU-W) SAI, RID
    Zdroj.dok.Multiscale Modeling and Simulation - ISSN 1540-3459
    Roč. 16, č. 1 (2018), s. 150-183
    Poč.str.34 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaNavier-Stokes system ; finite element numerical method ; finite volume numerical method ; asymptotic preserving schemes
    Vědní obor RIVBA - Obecná matematika
    Obor OECDPure mathematics
    CEPGA16-03230S GA ČR - Grantová agentura ČR
    Institucionální podporaMU-W - RVO:67985840
    UT WOS000429645500006
    EID SCOPUS85045026178
    DOI10.1137/16M1094233
    AnotaceWe study the convergence of numerical solutions of the compressible Navier-Stokes system to its incompressible limit. The numerical solution is obtained by a combined finite element-finite volume method based on the linear Crouzeix-Raviart finite element for the velocity and piecewise constant approximation for the density. The convective terms are approximated using upwinding. The distance between a numerical solution of the compressible problem and the strong solution of the incompressible Navier-Stokes equations is measured by means of a relative energy functional. For barotropic pressure exponent $\gamma \geq 3/2$ and for well-prepared initial data we obtain uniform convergence of order $\cal O(\sqrt\Delta t, h^a, \varepsilon)$, $a = \min \ \frac{2 \gamma - 3 \gamma, 1\$. Extensive numerical simulations confirm that the numerical solution of the compressible problem converges to the solution of the incompressible Navier-Stokes equations as the discretization parameters $\Delta t$, $h$ and the Mach number $\varepsilon$ tend to zero.
    PracovištěMatematický ústav
    KontaktJarmila Štruncová, struncova@math.cas.cz, library@math.cas.cz, Tel.: 222 090 757
    Rok sběru2019