Počet záznamů: 1  

Partition expanders

  1. 1.
    SYSNO ASEP0473687
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevPartition expanders
    Tvůrce(i) Gavinsky, Dmitry (MU-W) RID, SAI, ORCID
    Pudlák, Pavel (MU-W) RID, SAI
    Zdroj.dok.Theory of Computing Systems - ISSN 1432-4350
    Roč. 60, č. 3 (2017), s. 378-395
    Poč.str.18 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaexpanders ; pseudorandomness ; communication complexity
    Vědní obor RIVBA - Obecná matematika
    Obor OECDComputer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    CEPGBP202/12/G061 GA ČR - Grantová agentura ČR
    Institucionální podporaMU-W - RVO:67985840
    UT WOS000398890500001
    EID SCOPUS85006124086
    AnotaceWe introduce a new concept, which we call partition expanders. The basic idea is to study quantitative properties of graphs in a slightly different way than it is in the standard definition of expanders. While in the definition of expanders it is required that the number of edges between any pair of sufficiently large sets is close to the expected number, we consider partitions and require this condition only for most of the pairs of blocks. As a result, the blocks can be substantially smaller. We show that for some range of parameters, to be a partition expander a random graph needs exponentially smaller degree than any expander would require in order to achieve similar expanding properties. We apply the concept of partition expanders in communication complexity. First, we construct an optimal pseudo-random generator (PRG) for the Simultaneous Message Passing (SMP) model: it needs n + log k random bits against protocols of cost \Omega(k).
    PracovištěMatematický ústav
    KontaktJarmila Štruncová, struncova@math.cas.cz, library@math.cas.cz, Tel.: 222 090 757
    Rok sběru2018
Počet záznamů: 1