Počet záznamů: 1  

Distributed stabilisation of spatially invariant systems: positive polynomial approach

  1. 1.
    SYSNO ASEP0382623
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevDistributed stabilisation of spatially invariant systems: positive polynomial approach
    Tvůrce(i) Augusta, Petr (UTIA-B) RID
    Hurák, Z. (CZ)
    Celkový počet autorů2
    Zdroj.dok.Multidimensional Systems and Signal Processing - ISSN 1573-0824
    Roč. 24, Č. 1 (2013), s. 3-21
    Poč.str.19 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaMultidimensional systems ; Algebraic approach ; Control design ; Positiveness
    Vědní obor RIVBC - Teorie a systémy řízení
    CEP1M0567 GA MŠk - Ministerstvo školství, mládeže a tělovýchovy
    Institucionální podporaUTIA-B - RVO:67985556
    CEZAV0Z10750506 - UTIA-B (2005-2011)
    UT WOS000312715000002
    EID SCOPUS84871789562
    DOI10.1007/s11045-011-0152-5
    AnotaceThe paper gives a computationally feasible characterisation of spatially distributed controllers stabilising a linear spatially invariant system, that is, a system described by linear partial differential equations with coefficients independent on time and location. With one spatial and one temporal variable such a system can be modelled by a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stable bi-variate polynomial c. The paper is built on the relationship between stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials. For low-order discrete-time systems it is shown that a linearising factorisation of the polynomial Schur-Cohn matrix exists. For higher order plants and/or controllers such factorisation is not possible as the solution set is non-convex and one has to resort to some relaxation. For continuous-time systems, an analogue factorisation of the polynomial Hermite-Fujiwara matrix is not known.
    PracovištěÚstav teorie informace a automatizace
    KontaktMarkéta Votavová, votavova@utia.cas.cz, Tel.: 266 052 201.
    Rok sběru2013