Počet záznamů: 1  

In vivo and in vitro assessment of the role of glutathione antioxidant system in anthracycline-induced cardiotoxicity

  1. 1.
    SYSNO ASEP0370022
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevIn vivo and in vitro assessment of the role of glutathione antioxidant system in anthracycline-induced cardiotoxicity
    Tvůrce(i) Vávrová, A. (CZ)
    Popelová, O. (CZ)
    Štěrba, M. (CZ)
    Jirkovský, E. (CZ)
    Hašková, P. (CZ)
    Mertlíková-Kaiserová, Helena (UOCHB-X) RID
    Geršl, V. (CZ)
    Šimůnek, T. (CZ)
    Celkový počet autorů8
    Zdroj.dok.Archives of Toxicology - ISSN 0340-5761
    Roč. 85, č. 5 (2011), s. 525-535
    Poč.str.11 s.
    Jazyk dok.eng - angličtina
    Země vyd.DE - Německo
    Klíč. slovaanthracycline cardiotoxicity ; daunorubicin ; glutathione ; glutathione peroxidase ; glutathione peroxidase
    Vědní obor RIVCE - Biochemie
    CEZAV0Z40550506 - UOCHB-X (2005-2011)
    UT WOS000290318800008
    DOI10.1007/s00204-010-0615-8
    AnotaceThe clinical usefulness of anthracycline antineoplastic drugs is limited by their cardiotoxicity. Its mechanisms have not been fully understood, although the induction of oxidative stress is widely believed to play the principal role. Glutathione is the dominant cellular antioxidant, while glutathione peroxidase (GPx) together with glutathione reductase (GR) constitutes the major enzymatic system protecting the cardiac cells from oxidative damage. Therefore, this study aimed to assess their roles in anthracycline cardiotoxicity. Ten-week intravenous administration of daunorubicin (DAU, 3 mg/kg weekly) to rabbits induced heart failure, which was evident from decreased left ventricular ejection fraction and release of cardiac troponins to circulation. However, no significant changes in either total or oxidized glutathione contents or GR activity were detected in left ventricular tissue of DAU-treated rabbits when compared with control animals. GPx activity in the cardiac tissue significantly increased. In H9c2 rat cardiac cells, 24-h DAU exposure (0.1–10 lM) induced significant dose-dependent toxicity. Cellular content of reduced glutathione was insignificantly decreased, oxidized glutathione and GR activity were unaffected, and GPx activity was significantly increased. Neither buthionine sulfoximine (BSO, glutathione biosynthesis inhibitor) nor 2-oxo-4-thiazolidine-carboxylic acid (OTC, glutathione biosynthetic precursor) had significant effects on DAU cytotoxicity. This contrasted with model oxidative injury induced by hydrogen peroxide, which cytotoxicity was increased by BSO and decreased by OTC. In conclusion, our results suggest that the dysfunction of glutathione antioxidant system does not play a causative role in anthracycline cardiotoxicity.
    PracovištěÚstav organické chemie a biochemie
    KontaktJana Procházková, janap@uochb.cas.cz, Tel.: 220 183 418 ; Viktorie Chládková, viktorie.chladkova@uochb.cas.cz, Tel.: 232 002 434
    Rok sběru2012