Počet záznamů: 1  

Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression

  1. 1.
    SYSNO ASEP0538076
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevData-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression
    Tvůrce(i) Manzhos, S. (CA)
    Golub, Pavlo (UFCH-W) ORCID, RID, SAI
    Číslo článku074104
    Zdroj.dok.Journal of Chemical Physics. - : AIP Publishing - ISSN 0021-9606
    Roč. 153, č. 7 (2020)
    Poč.str.15 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovathomas-fermi approximation ; functional theory ; local pseudopotentials ; magnesium ; accurate ; aluminum
    Vědní obor RIVCF - Fyzikální chemie a teoretická chemie
    Obor OECDPhysical chemistry
    Způsob publikováníOpen access
    Institucionální podporaUFCH-W - RVO:61388955
    UT WOS000563905200002
    EID SCOPUS85089794538
    DOI https://doi.org/10.1063/5.0015042
    AnotaceWe study the dependence of kinetic energy densities (KEDs) on density-dependent variables that have been suggested in previous works on kinetic energy functionals for orbital-free density functional theory. We focus on the role of data distribution and on data and regressor selection. We compare unweighted and weighted linear and Gaussian process regressions of KEDs for light metals and a semiconductor. We find that good quality linear regression resulting in good energy-volume dependence is possible over density-dependent variables suggested in previous literature studies. This is achieved with weighted fitting based on the KED histogram. With Gaussian process regressions, excellent KED fit quality well exceeding that of linear regressions is obtained as well as a good energy-volume dependence, which was somewhat better than that of best linear regressions. We find that while the use of the effective potential as a descriptor improves linear KED fitting, it does not improve the quality of the energy-volume dependence with linear regressions but substantially improves it with Gaussian process regression. Gaussian process regression is also able to perform well without data weighting.
    PracovištěÚstav fyzikální chemie J.Heyrovského
    KontaktMichaela Knapová, michaela.knapova@jh-inst.cas.cz, Tel.: 266 053 196
    Rok sběru2021
    Elektronická adresahttp://hdl.handle.net/11104/0315897
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.