Počet záznamů: 1  

Estimating and localizing the algebraic and total numerical errors using flux reconstructions

  1. 1.
    SYSNO ASEP0481663
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevEstimating and localizing the algebraic and total numerical errors using flux reconstructions
    Tvůrce(i) Papež, Jan (UIVT-O) RID, SAI
    Strakoš, Z. (CZ)
    Vohralík, M. (FR)
    Zdroj.dok.Numerische Mathematik - ISSN 0029-599X
    Roč. 138, č. 3 (2018), s. 681-721
    Poč.str.41 s.
    Jazyk dok.eng - angličtina
    Země vyd.DE - Německo
    Klíč. slovanumerical solution of partial differential equations ; finite element method ; a posteriori error estimation ; algebraic error ; discretization error ; stopping criteria ; spatial distribution of the error
    Vědní obor RIVBA - Obecná matematika
    Obor OECDApplied mathematics
    CEPGA13-06684S GA ČR - Grantová agentura ČR
    Institucionální podporaUIVT-O - RVO:67985807
    UT WOS000426063200006
    EID SCOPUS85028846639
    DOI https://doi.org/10.1007/s00211-017-0915-5
    AnotaceThis paper presents a methodology for computing upper and lower bounds for both the algebraic and total errors in the context of the conforming finite element discretization of the Poisson model problem and an arbitrary iterative algebraic solver. The derived bounds do not contain any unspecified constants and allow estimating the local distribution of both errors over the computational domain. Combining these bounds, we also obtain guaranteed upper and lower bounds on the discretization error. This allows to propose novel mathematically justified stopping criteria for iterative algebraic solvers ensuring that the algebraic error will lie below the discretization one. Our upper algebraic and total error bounds are based on locally reconstructed fluxes in H(div,omega), whereas the lower algebraic and total error bounds rely on locally constructed H01(omega)-liftings of the algebraic and total residuals. We prove global and local efficiency of the upper bound on the total error and its robustness with respect to the approximation polynomial degree. Relationships to the previously published estimates on the algebraic error are discussed. Theoretical results are illustrated on numerical experiments for higher-order finite element approximations and the preconditioned conjugate gradient method. They in particular witness that the proposed methodology yields a tight estimate on the local distribution of the algebraic and total errors over the computational domain and illustrate the associated cost.
    PracovištěÚstav informatiky
    KontaktTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Rok sběru2019
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.