Počet záznamů: 1  

Epimorphisms in Varieties of Residuated Structures

  1. 1.
    0478590 - ÚI 2018 RIV US eng J - Článek v odborném periodiku
    Bezhanishvili, G. - Moraschini, Tommaso - Raftery, J.G.
    Epimorphisms in Varieties of Residuated Structures.
    Journal of Algebra. Roč. 492, 15 December (2017), s. 185-211. ISSN 0021-8693. E-ISSN 1090-266X
    Grant CEP: GA ČR GA17-04630S
    Institucionální podpora: RVO:67985807
    Klíčová slova: Epimorphism * Brouwerian algebra * Heyting algebra * Esakia space * Residuated lattice * Sugihara monoid * Substructural logic * Intuitionistic logic * Relevance logic * R-mingle * Beth definability
    Obor OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Impakt faktor: 0.675, rok: 2017 ; AIS: 0.733, rok: 2017
    DOI: https://doi.org/10.1016/j.jalgebra.2017.08.023

    It is proved that epimorphisms are surjective in a range of varieties of residuated structures, including all varieties of Heyting or Brouwerian algebras of finite depth, and all varieties consisting of Gödel algebras, relative Stone algebras, Sugihara monoids or positive Sugihara monoids. This establishes the infinite deductive Beth definability property for a corresponding range of substructural logics. On the other hand, it is shown that epimorphisms need not be surjective in a locally finite variety of Heyting or Brouwerian algebras of width 2. It follows that the infinite Beth property is strictly stronger than the so-called finite Beth property, confirming a conjecture of Blok and Hoogland.
    Trvalý link: http://hdl.handle.net/11104/0274669


     
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    a0478590.pdf9598.3 KBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.