Počet záznamů: 1
A Static Model of Abiotic Predictors and Forest Ecosystem Receptor Designed Using Dimensionality Reduction and Regression Analysis
- 1.
SYSNO ASEP 0467364 Druh ASEP J - Článek v odborném periodiku Zařazení RIV J - Článek v odborném periodiku Poddruh J Článek ve WOS Název A Static Model of Abiotic Predictors and Forest Ecosystem Receptor Designed Using Dimensionality Reduction and Regression Analysis Tvůrce(i) Samec, P. (CZ)
Rychtecká, P. (CZ)
Tuček, P. (CZ)
Bojko, J. (CZ)
Zapletal, Miloš (UEK-B) SAI
Cudlín, Pavel (UEK-B) RID, SAI, ORCIDZdroj.dok. Baltic Forestry. - : Lithuanian Research Centre for Agriculture and Forestry - ISSN 1392-1355
Roč. 22, č. 2 (2016), s. 259-274Poč.str. 14 s. Jazyk dok. eng - angličtina Země vyd. LT - Litva Klíč. slova forest state monitoring ; EMEP-LRTAP ; floodplain ; mountain forests ; canonical correlation analysis Vědní obor RIV EH - Ekologie - společenstva CEP LO1415 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy Institucionální podpora RVO:67179843 - RVO:67179843 UT WOS 000392367900009 EID SCOPUS 85008485191 Anotace The closeness of dependence level between growth environment (abiotic predictors) and forest ecosystem (receptor) indicates
accordance or discrepancy between site and forest state. Our forest ecosystem analysis was focused on static model approximation
between abiotic predictors with the closest dependence and properties of the receptor at 1×1 km grid in the Czech Republic (Central
Europe). The predictors have been selected from natural abiotic quantities sets of temperatures, precipitation, acid deposition, soil
properties and relative site insolation. The receptor properties have been selected from remote sensing data, density and volume of
above-ground biomass of forest stands according to the forest management plans, and from surface humus chemical properties. A
selection of the most dependent quantities was made by combining factor analysis and cluster analysis. The static modelling of the
dependences between selected predictors and receptor properties was conducted by canonical correlation analysis. Average temperature,
annual precipitation, total potential acid deposition, soil base saturation, CEC, total acid elements and site insolation index
closely corresponded to NDVI and surface humus base saturation, Corg and acid elements content at 30% of the analysed grid of
forest soils and it indicated forest state within the confidence interval at 69% of the forest soil grid (rCCA = 0.79; P < 0.00001). The
forest ecosystem state that corresponds to the selected abiotic predictors was demonstrated in hilly altitudes. The tested procedure is
inconvenient for forest state analysis in floodplains and moorlands. Based on approximation deviations, highland and mountain forests
were divided into areas with non-optimum or more optimum ecosystem state than as corresponds to the values of the predictors.
Pracoviště Ústav výzkumu globální změny Kontakt Nikola Šviková, svikova.n@czechglobe.cz, Tel.: 511 192 268 Rok sběru 2017
Počet záznamů: 1