Počet záznamů: 1  

A Static Model of Abiotic Predictors and Forest Ecosystem Receptor Designed Using Dimensionality Reduction and Regression Analysis

  1. 1.
    SYSNO ASEP0467364
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevA Static Model of Abiotic Predictors and Forest Ecosystem Receptor Designed Using Dimensionality Reduction and Regression Analysis
    Tvůrce(i) Samec, P. (CZ)
    Rychtecká, P. (CZ)
    Tuček, P. (CZ)
    Bojko, J. (CZ)
    Zapletal, Miloš (UEK-B) SAI
    Cudlín, Pavel (UEK-B) RID, SAI, ORCID
    Zdroj.dok.Baltic Forestry. - : Lithuanian Research Centre for Agriculture and Forestry - ISSN 1392-1355
    Roč. 22, č. 2 (2016), s. 259-274
    Poč.str.14 s.
    Jazyk dok.eng - angličtina
    Země vyd.LT - Litva
    Klíč. slovaforest state monitoring ; EMEP-LRTAP ; floodplain ; mountain forests ; canonical correlation analysis
    Vědní obor RIVEH - Ekologie - společenstva
    CEPLO1415 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    Institucionální podporaRVO:67179843 - RVO:67179843
    UT WOS000392367900009
    EID SCOPUS85008485191
    AnotaceThe closeness of dependence level between growth environment (abiotic predictors) and forest ecosystem (receptor) indicates
    accordance or discrepancy between site and forest state. Our forest ecosystem analysis was focused on static model approximation
    between abiotic predictors with the closest dependence and properties of the receptor at 1×1 km grid in the Czech Republic (Central
    Europe). The predictors have been selected from natural abiotic quantities sets of temperatures, precipitation, acid deposition, soil
    properties and relative site insolation. The receptor properties have been selected from remote sensing data, density and volume of
    above-ground biomass of forest stands according to the forest management plans, and from surface humus chemical properties. A
    selection of the most dependent quantities was made by combining factor analysis and cluster analysis. The static modelling of the
    dependences between selected predictors and receptor properties was conducted by canonical correlation analysis. Average temperature,
    annual precipitation, total potential acid deposition, soil base saturation, CEC, total acid elements and site insolation index
    closely corresponded to NDVI and surface humus base saturation, Corg and acid elements content at 30% of the analysed grid of
    forest soils and it indicated forest state within the confidence interval at 69% of the forest soil grid (rCCA = 0.79; P < 0.00001). The
    forest ecosystem state that corresponds to the selected abiotic predictors was demonstrated in hilly altitudes. The tested procedure is
    inconvenient for forest state analysis in floodplains and moorlands. Based on approximation deviations, highland and mountain forests
    were divided into areas with non-optimum or more optimum ecosystem state than as corresponds to the values of the predictors.
    PracovištěÚstav výzkumu globální změny
    KontaktNikola Šviková, svikova.n@czechglobe.cz, Tel.: 511 192 268
    Rok sběru2017
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.