Počet záznamů: 1  

Dimensionality Reduction Methods for Biomedical Data

  1. 1.
    0491813 - ÚI 2019 RIV CZ eng J - Článek v odborném periodiku
    Kalina, Jan - Schlenker, A.
    Dimensionality Reduction Methods for Biomedical Data.
    Lékař a technika. Biomedicinské inženýrství a informatika. Roč. 48, č. 1 (2018), s. 29-35. ISSN 0301-5491
    Grant CEP: GA MZd(CZ) NV15-29835A
    Institucionální podpora: RVO:67985807
    Klíčová slova: biomedical data * dimensionality * biostatistics * multivariate analysis * sparsity
    Obor OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Web výsledku:
    https://ojs.cvut.cz/ojs/index.php/CTJ/article/view/4425/4722

    The aim of this paper is to present basic principles of common multivariate statistical approaches to dimensionality reduction and to discuss three particular approaches, namely feature extraction, (prior) variable selection, and sparse variable selection. Their important examples are also presented in the paper, which includes the principal component analysis, minimum redundancy maximum relevance variable selection, and nearest shrunken centroid classifier with an intrinsic variable selection. Each of the three methods is illustrated on a real dataset with a biomedical motivation, including a biometric identification based on keystroke dynamics or a study of metabolomic profiles. Advantages and benefits of performing dimensionality reduction of multivariate data are discussed.

    Trvalý link: http://hdl.handle.net/11104/0285432

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    a0491813.pdf4349.9 KBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.