Počet záznamů: 1  

Estimating and localizing the algebraic and total numerical errors using flux reconstructions

  1. 1.
    0481663 - ÚI 2019 RIV DE eng J - Článek v odborném periodiku
    Papež, Jan - Strakoš, Z. - Vohralík, M.
    Estimating and localizing the algebraic and total numerical errors using flux reconstructions.
    Numerische Mathematik. Roč. 138, č. 3 (2018), s. 681-721. ISSN 0029-599X. E-ISSN 0945-3245
    Grant CEP: GA ČR GA13-06684S
    Grant ostatní: GA MŠk(CZ) LL1202
    Institucionální podpora: RVO:67985807
    Klíčová slova: numerical solution of partial differential equations * finite element method * a posteriori error estimation * algebraic error * discretization error * stopping criteria * spatial distribution of the error
    Obor OECD: Applied mathematics
    Impakt faktor: 2.137, rok: 2018 ; AIS: 1.56, rok: 2018
    DOI: https://doi.org/10.1007/s00211-017-0915-5

    This paper presents a methodology for computing upper and lower bounds for both the algebraic and total errors in the context of the conforming finite element discretization of the Poisson model problem and an arbitrary iterative algebraic solver. The derived bounds do not contain any unspecified constants and allow estimating the local distribution of both errors over the computational domain. Combining these bounds, we also obtain guaranteed upper and lower bounds on the discretization error. This allows to propose novel mathematically justified stopping criteria for iterative algebraic solvers ensuring that the algebraic error will lie below the discretization one. Our upper algebraic and total error bounds are based on locally reconstructed fluxes in H(div,omega), whereas the lower algebraic and total error bounds rely on locally constructed H01(omega)-liftings of the algebraic and total residuals. We prove global and local efficiency of the upper bound on the total error and its robustness with respect to the approximation polynomial degree. Relationships to the previously published estimates on the algebraic error are discussed. Theoretical results are illustrated on numerical experiments for higher-order finite element approximations and the preconditioned conjugate gradient method. They in particular witness that the proposed methodology yields a tight estimate on the local distribution of the algebraic and total errors over the computational domain and illustrate the associated cost.
    Trvalý link: http://hdl.handle.net/11104/0277188


     
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    a0481663.pdf82.6 MBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.