Počet záznamů: 1  

Predicting GPP in Carpathian Beech Forests: Uncovering spatial and temporal patterns using a regression model with climatic, topographic and additional features

  1. 1.
    0601463 - ÚVGZ 2025 RIV SI eng C - Konferenční příspěvek (zahraniční konf.)
    Missarov, A. - Kašpar, J. - Král, K. - Brovkina, Olga - Švik, Marian
    Predicting GPP in Carpathian Beech Forests: Uncovering spatial and temporal patterns using a regression model with climatic, topographic and additional features.
    Predicting future trends – responses of beech and fir in the Carpathian region. Lublaň: Slovenian Forestry Institute, The Silva Slovenica Publishing Centre, 2024 - (Čater, M.; Dařenová, E.), s. 67-71. ISBN 978-961-6993-87-6.
    [Predicting future trends – responses of beech and fir in the Carpathian region. Ljublaň (SI), 05.09.2024-05.09.2024]
    Grant CEP: GA ČR(CZ) GF21-47163L
    Institucionální podpora: RVO:86652079
    Klíčová slova: gross primary product * remote sensing * regression model * temperature * precipitation * digital elevation model
    Obor OECD: Forestry
    DOI: https://doi.org/10.20315/SilvaSlovenica.0026.12

    Climate change impact ecosystems globally, including the mixed forests of the Carpathian Mountains (Kruhlov et al. 2017). The primary manifestations of climate change are shifts in temperature and precipitation regimes, which undoubtedly affect biomass growth in complex ways. Since direct observations of the future are impossible, we rely on various modeling methods. Machine learning is the most popular contemporary approach for addressing such tasks. The aim of our study is to develop a regression model that predicts the behavior of Gross Primary Product (GPP) based on a range of climatic, topographic, and other variables. We use this model to forecast the growth of beech forests over the next 20 years under different climate scenarios.
    Trvalý link: https://hdl.handle.net/11104/0358630


     
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    Predicting future trends – responses of.pdf08.8 MBVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.