Počet záznamů: 1
Machine learning approach towards laser powder bed fusion manufactured AlSi10Mg thin tubes in laser shock peening
- 1.0584910 - FZÚ 2025 RIV GB eng J - Článek v odborném periodiku
Stránský, O. - Tarant, Ivan - Beránek, L. - Holešovský, F. - Pathak, Sunil - Brajer, Jan - Mocek, Tomáš - Denk, Ondřej
Machine learning approach towards laser powder bed fusion manufactured AlSi10Mg thin tubes in laser shock peening.
Surface Engineering. Roč. 40, č. 1 (2024), s. 66-72. ISSN 0267-0844. E-ISSN 1743-2944
Institucionální podpora: RVO:68378271
Klíčová slova: laser powder bed fusion * laser shock peening * porosity * residual stresses * aluminium * machine learning * optimisation
Obor OECD: Optics (including laser optics and quantum optics)
Impakt faktor: 2.4, rok: 2023 ; AIS: 0.298, rok: 2023
Způsob publikování: Open access
DOI: https://doi.org/10.1177/02670844231221974
The industry’s demand for intricate geometries has spurred research into additive manufacturing (AM). Customising material properties, including surface roughness, integrity and porosity reduction, are the key industrial goals. This neces- sitates a holistic approach integrating AM, laser shock peening (LSP) and non-planar geometr y considerations. In this study, machine learning and neural networks offer a novel way to create intricate, abstract models capable of discerning complex process relationships. Our focus is on leveraging the certain range of laser parameters (energy, spot area, over- lap) to identify optimal residual stress, average surface roughness, and porosity values. Confirmatory experiments dem- onstrate close agreement, with an 8% discrepancy between modelled and actual residual stress values. This approach’s viability is evident even with limited datasets, provided proper precautions are taken.
Trvalý link: https://hdl.handle.net/11104/0352720
Název souboru Staženo Velikost Komentář Verze Přístup 0584910.pdf 0 1.7 MB CC Licence Vydavatelský postprint povolen
Počet záznamů: 1