Počet záznamů: 1
Robotization of conventional electrolytic process in metallography
- 1.0577044 - ÚPT 2024 RIV DE eng, ger J - Článek v odborném periodiku
Ambrož, Ondřej - Čermák, Jan - Jozefovič, Patrik - Mikmeková, Šárka
Robotization of conventional electrolytic process in metallography.
Praktische Metallographie. Roč. 60, č. 10 (2023), s. 643-659. ISSN 0032-678X. E-ISSN 2195-8599
Grant CEP: GA TA ČR(CZ) TN02000020
Grant ostatní: AV ČR(CZ) LQ100652201
Program: Prémie Lumina quaeruntur
Institucionální podpora: RVO:68081731
Klíčová slova: robotization * electrolytic process * metallography * austenitic stainless steel * delta ferrite * safety
Obor OECD: Materials engineering
Impakt faktor: 0.3, rok: 2023
Způsob publikování: Omezený přístup
Web výsledku:
https://www.degruyter.com/document/doi/10.1515/pm-2023-1056/htmlDOI: https://doi.org/10.1515/pm-2023-1056
Electrolytic polishing is a finishing method that removes material from a metal or alloy through an anodic dissolution process. Etching can often be performed in the same electrolyte by simply reducing the applied voltage to 10 percent of that required for polishing. Manufacturers of metallographic equipment present their products as automated. Only the electrolysis process itself is automated. After finishing, the sample must be immediately removed manually by the operator and cleaned. This process is critical with regard to the quality of the final sample surface and safety, because hazardous substances are often handled. The robot is placed next to an electrolytic equipment and handles all sample movements and the cleaning process in the ultrasonic bath in this experiment. The samples are made from ER308LSi austenitic stainless steel using 3D printing by Wire Arc Additive Manufacturing (WAAM). The final surface is achieved electrolytically on the commercial equipment. The aim of the experiment is to compare the microstructure, especially with regard to the possibility of distinguishing delta ferrite. The surface is characterized using various microscopic techniques. Robotization can be the key to improving surface quality and safety.
Trvalý link: https://hdl.handle.net/11104/0348041
Počet záznamů: 1