Počet záznamů: 1
Existence results in large-strain magnetoelasticity
- 1.0576561 - ÚTIA 2024 RIV DE eng J - Článek v odborném periodiku
Bresciani, M. - Davoli, E. - Kružík, Martin
Existence results in large-strain magnetoelasticity.
Annales de l'Institut Henri Poincaré. Analyse non Linéaire. Roč. 40, č. 3 (2023), s. 557-592. ISSN 0294-1449. E-ISSN 1873-1430
Grant CEP: GA MŠMT(CZ) 8J19AT013; GA ČR(CZ) GF19-29646L
Institucionální podpora: RVO:67985556
Klíčová slova: magnetoelasticity * Eulerian-Lagrangian variational problems * rate-independent processes
Obor OECD: Pure mathematics
Impakt faktor: 1.8, rok: 2023 ; AIS: 2.107, rok: 2023
Způsob publikování: Omezený přístup
Web výsledku:
http://library.utia.cas.cz/separaty/2023/MTR/kruzik-0576561.pdf https://ems.press/journals/aihpc/articles/7168658
DOI: https://doi.org/10.4171/AIHPC/51
We investigate variational problems in large-strain magnetoelasticity, in both the static and the quasistatic settings. The model contemplates a mixed Eulerian–Lagrangian formulation: while deformations are defined on the reference configuration, magnetizations are defined on the deformed set in the actual space. In the static setting, we establish the existence of minimizers. In particular, we provide a compactness result for sequences of admissible states with equi-bounded energies which gives the convergence of the composition of magnetizations with deformations. In the quasistatic setting, we consider a notion of dissipation which is frame-indifferent and we show that the incremental minimization problem is solvable. Then we propose a regularization of the model in the spirit of gradient polyconvexity and we prove the existence of energetic solutions for the regularized model.
Trvalý link: https://hdl.handle.net/11104/0346491
Počet záznamů: 1