Počet záznamů: 1
On the Application of the SCD Semismooth* Newton Method to Variational Inequalities of the Second Kind
- 1.0569924 - ÚTIA 2023 RIV NL eng J - Článek v odborném periodiku
Gfrerer, H. - Outrata, Jiří - Valdman, Jan
On the Application of the SCD Semismooth* Newton Method to Variational Inequalities of the Second Kind.
Set-Valued and Variational Analysis. Roč. 30, č. 4 (2022), s. 1453-1484. ISSN 1877-0533. E-ISSN 1877-0541
Grant CEP: GA ČR GF21-06569K
Institucionální podpora: RVO:67985556
Klíčová slova: Newton method * Semismoothness∗ * Superlinear convergence * Global convergence * Generalized equation * Coderivatives
Obor OECD: Pure mathematics
Impakt faktor: 1.6, rok: 2022 ; AIS: 0.937, rok: 2022
Způsob publikování: Omezený přístup
Web výsledku:
http://library.utia.cas.cz/separaty/2023/MTR/valdman-0569924.pdf https://link.springer.com/article/10.1007/s11228-022-00651-2
DOI: https://doi.org/10.1007/s11228-022-00651-2
The paper starts with a description of SCD (subspace containing derivative) mappings and the SCD Newton method for the solution of general inclusions. This method is then applied to a class of variational inequalities of the second kind. As a result, one obtains an implementable algorithm which exhibits locally superlinear convergence. Thereafter we suggest several globally convergent hybrid algorithms in which one combines the SCD Newton method with selected splitting algorithms for the solution of monotone variational inequalities. Finally, we demonstrate the efficiency of one of these methods via a Cournot-Nash equilibrium, modeled as a variational inequality of the second kind, where one admits really large numbers of players (firms) and produced commodities.
Trvalý link: https://hdl.handle.net/11104/0341243
Počet záznamů: 1