Počet záznamů: 1  

Tackling the challenges of group network inference from intracranial EEG data

  1. 1.
    0564952 - ÚI 2023 RIV CH eng J - Článek v odborném periodiku
    Pidnebesna, Anna - Šanda, Pavel - Kalina, A. - Hammer, J. - Marusič, P. - Vlček, Kamil - Hlinka, Jaroslav
    Tackling the challenges of group network inference from intracranial EEG data.
    Frontiers in Neuroscience. Roč. 16, 01 December 2022 (2022), č. článku 1061867. E-ISSN 1662-453X
    Grant CEP: GA ČR(CZ) GA19-11753S
    Institucionální podpora: RVO:67985807 ; RVO:67985823
    Klíčová slova: connectivity analysis * Phase Locking Value * Directed Transfer Function * intracranial EEG * information flow * visual pathways * ventral visual stream * dorsal visual stream
    Obor OECD: Neurosciences (including psychophysiology; Neurosciences (including psychophysiology (FGU-C)
    Impakt faktor: 4.300, rok: 2022
    Způsob publikování: Open access

    INTRODUCTION: Intracranial EEG (iEEG) data is a powerful way to map brain function, characterized by high temporal and spatial resolution, allowing the study of interactions among neuronal populations that orchestrate cognitive processing. However, the statistical inference and analysis of brain networks using iEEG data faces many challenges related to its sparse brain coverage, and its inhomogeneity across patients. METHODS: We review these challenges and develop a methodological pipeline for estimation of network structure not obtainable from any single patient, illustrated on the inference of the interaction among visual streams using a dataset of 27 human iEEG recordings from a visual experiment employing visual scene stimuli. 100 ms sliding window and multiple band-pass filtered signals are used to provide temporal and spectral resolution. For the connectivity analysis we showcase two connectivity measures reflecting different types of interaction between regions of interest (ROI): Phase Locking Value as a symmetric measure of synchrony, and Directed Transfer Function—asymmetric measure describing causal interaction. For each two channels, initial uncorrected significance testing at p < 0.05 for every time-frequency point is carried out by comparison of the data-derived connectivity to a baseline surrogate-based null distribution, providing a binary time-frequency connectivity map. For each ROI pair, a connectivity density map is obtained by averaging across all pairs of channels spanning them, effectively agglomerating data across relevant channels and subjects. Finally, the difference of the mean map value after and before the stimulation is compared to the same statistic in surrogate data to assess link significance. RESULTS: The analysis confirmed the function of the parieto-medial temporal pathway, mediating visuospatial information between dorsal and ventral visual streams during visual scene analysis. Moreover, we observed the anterior hippocampal connectivity with more posterior areas in the medial temporal lobe, and found the reciprocal information flow between early processing areas and medial place area. DISCUSSION: To summarize, we developed an approach for estimating network connectivity, dealing with the challenge of sparse individual coverage of intracranial EEG electrodes. Its application provided new insights into the interaction between the dorsal and ventral visual streams, one of the iconic dualities in human cognition.
    Trvalý link: https://hdl.handle.net/11104/0336529

    Název souboruStaženoVelikostKomentářVerzePřístup
    0564952-aoa.pdf35.2 MBOA CC BY 4.0Vydavatelský postprintpovolen
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.