Počet záznamů: 1
Navier-Stokes-Fourier system with Dirichlet boundary conditions
- 1.0560286 - MÚ 2023 RIV GB eng J - Článek v odborném periodiku
Chaudhuri, N. - Feireisl, Eduard
Navier-Stokes-Fourier system with Dirichlet boundary conditions.
Applicable Analysis. Roč. 101, č. 12 (2022), s. 4076-4094. ISSN 0003-6811. E-ISSN 1563-504X
Grant CEP: GA ČR(CZ) GA18-05974S
Institucionální podpora: RVO:67985840
Klíčová slova: Dirichlet boundary conditions * Navier-Stokes-Fourier system * weak solution * weak-strong uniqueness
Obor OECD: Pure mathematics
Impakt faktor: 1.1, rok: 2022
Způsob publikování: Open access
Web výsledku:
https://doi.org/10.1080/00036811.2021.1992396
DOI: https://doi.org/10.1080/00036811.2021.1992396
We consider the Navier–Stokes–Fourier system describing the motion of a compressible, viscous, and heat-conducting fluid in a bounded domain (Formula presented.), d = 2, 3, with general non-homogeneous Dirichlet boundary conditions for the velocity and the absolute temperature, with the associated boundary conditions for the density on the inflow part. We introduce a new concept of a weak solution based on the satisfaction of the entropy inequality together with a balance law for the ballistic energy. We show the weak–strong uniqueness principle as well as the existence of global-in-time solutions.
Trvalý link: https://hdl.handle.net/11104/0333272
Název souboru Staženo Velikost Komentář Verze Přístup Feireisl7.pdf 7 1.4 MB Vydavatelský postprint povolen
Počet záznamů: 1