Počet záznamů: 1  

Navier-Stokes-Fourier system with Dirichlet boundary conditions

  1. 1.
    0560286 - MÚ 2023 RIV GB eng J - Článek v odborném periodiku
    Chaudhuri, N. - Feireisl, Eduard
    Navier-Stokes-Fourier system with Dirichlet boundary conditions.
    Applicable Analysis. Roč. 101, č. 12 (2022), s. 4076-4094. ISSN 0003-6811. E-ISSN 1563-504X
    Grant CEP: GA ČR(CZ) GA18-05974S
    Institucionální podpora: RVO:67985840
    Klíčová slova: Dirichlet boundary conditions * Navier-Stokes-Fourier system * weak solution * weak-strong uniqueness
    Obor OECD: Pure mathematics
    Impakt faktor: 1.1, rok: 2022
    Způsob publikování: Open access
    Web výsledku:
    https://doi.org/10.1080/00036811.2021.1992396
    DOI: https://doi.org/10.1080/00036811.2021.1992396

    We consider the Navier–Stokes–Fourier system describing the motion of a compressible, viscous, and heat-conducting fluid in a bounded domain (Formula presented.), d = 2, 3, with general non-homogeneous Dirichlet boundary conditions for the velocity and the absolute temperature, with the associated boundary conditions for the density on the inflow part. We introduce a new concept of a weak solution based on the satisfaction of the entropy inequality together with a balance law for the ballistic energy. We show the weak–strong uniqueness principle as well as the existence of global-in-time solutions.

    Trvalý link: https://hdl.handle.net/11104/0333272

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    Feireisl7.pdf71.4 MBVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.