Počet záznamů: 1  

Overview of S(T)EM electron detectors with garnet scintillators: Some potentials and limits

  1. 1.
    0544784 - ÚPT 2022 RIV US eng J - Článek v odborném periodiku
    Schauer, Petr - Lalinský, Ondřej - Kučera, M.
    Overview of S(T)EM electron detectors with garnet scintillators: Some potentials and limits.
    Microscopy Research and Technique. Roč. 84, č. 4 (2021), s. 753-770. ISSN 1059-910X. E-ISSN 1097-0029
    Grant CEP: GA MPO(CZ) FV30271; GA MŠMT(CZ) LO1212; GA MŠMT ED0017/01/01
    Institucionální podpora: RVO:68081731
    Klíčová slova: cathodoluminescence * conductive coating * garnet film scintillator * light guide * SEM electron detector
    Obor OECD: Electrical and electronic engineering
    Impakt faktor: 2.893, rok: 2021
    Způsob publikování: Open access
    https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jemt.23634

    The paper is focused on a complete configuration and design of a scintillation electron detector in scanning electron and/or scanning transmission electron microscopes (S(T)EM) with garnet scintillators. All processes related to the scintillator and light guide were analyzed. In more detail, excitation electron trajectories and absorbed energy distributions, efficiencies and kinetics of scintillators, as well as the influence of their anti-charging coatings and their substrates, assigned optical properties, and light guide efficiencies of different configurations were presented and discussed. The results indicate problems with low-energy detection below 1 keV when the scandium conductive coating with a thickness of only 3 nm must be used to allow electron penetration without significant losses. It was shown that the short rise and decay time and low afterglow of LuGdGaAG:Ce liquid-phase epitaxy garnet film scintillators guarantee a strong modulation transfer function of the entire imaging system resulting in a contrast transfer ability up to 0.6 lp/pixel. Small film scintillator thicknesses were found to be an advantage due to the low signal self-absorption. The optical absorption coefficients, refractive indices, and the mirror optical reflectance of materials involved in the light transport to the photomultiplier tube photocathode were investigated. The computer-optimized design SCIUNI application was used to configure the optimized light guide system. It was shown that nonoptimized edge-guided systems possess very poor light guiding efficiency as low as 1%, while even very complex optimized ones can achieve more than 20%.
    Trvalý link: http://hdl.handle.net/11104/0321592

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.