Počet záznamů: 1  

Erratic server behavior detection using machine learning on streams of monitoring data

  1. 1.
    0538411 - FZÚ 2021 RIV FR eng C - Konferenční příspěvek (zahraniční konf.)
    Adam, Martin - Magnoni, L. - Pilát, M. - Adamová, Dagmar
    Erratic server behavior detection using machine learning on streams of monitoring data.
    EPJ Web of Conferences. Vol. 245. Les Ulis: EDP Sciences, 2020 - (Doglioni, C.; Jackson, P.; Kamleh, W.; Kim, D.; Silvestris, L.; Stewart, G.), s. 1-8, č. článku 07002. ISSN 2100-014X.
    [International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019) /24./. Adelaide (AU), 04.11.2019-08.11.2019]
    Grant CEP: GA MŠk LM2015058; GA MŠk EF16_013/0001404; GA MŠk(CZ) LM2018104
    Grant ostatní: OP VVV - CERN-C(XE) CZ.02.1.01/0.0/0.0/16_013/0001404
    Institucionální podpora: RVO:68378271 ; RVO:61389005
    Klíčová slova: machine learning * monitoring
    Obor OECD: Automation and control systems; Particles and field physics (UJF-V)

    With the explosion of the number of distributed applications, a new dynamic server environment emerged grouping servers into clusters, utilization of which depends on the current demand for the application. To provide reliable and smooth services it is crucial to detect and fix possible erratic behavior of individual servers in these clusters. Use of standard techniques for this purpose requires manual work and delivers sub-optimal results. Using only application agnostic monitoring metrics our machine learning based method analyzes the recent performance of the inspected server as well as the state of the rest of the cluster, thus checking not only the behavior of the single server, but the load on the whole distributed application as well. We have implemented our method in a Spark job running in the CERN MONIT infrastructure. In this contribution we present results of testing multiple machine learning algorithms and pre-processing techniques to identify the servers erratic behavior.
    Trvalý link: http://hdl.handle.net/11104/0316216

    Název souboruStaženoVelikostKomentářVerzePřístup
    0538411.pdf0151.5 KBCC licenceVydavatelský postprintpovolen
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.