Počet záznamů: 1  

Surface-enhanced Raman Spectroscopy in Microfluidic Chips for Directed Evolution of Enzymes and Environmental Monitoring

  1. 1.
    0535590 - ÚPT 2021 RIV US eng C - Konferenční příspěvek (zahraniční konf.)
    Pilát, Zdeněk - Ježek, Jan - Kizovský, Martin - Klementová, Tereza - Krátký, Stanislav - Sobota, Jaroslav - Samek, Ota - Zemánek, Pavel - Buryška, T. - Damborský, J. - Prokop, Z.
    Surface-enhanced Raman Spectroscopy in Microfluidic Chips for Directed Evolution of Enzymes and Environmental Monitoring.
    PhotonIcs and Electromagnetics Research Symposium - Spring, PIERS-Spring 2019. Proceedings. New York: IEEE, 2019, s. 1301-1309. Progress in Electromagnetics Research Symposium. ISBN 978-1-7281-3403-1. ISSN 1559-9450.
    [PhotonIcs and Electromagnetics Research Symposium - Spring (PIERS-Spring) 2019. Rome (IT), 17.06.2019-20.06.2019]
    Grant CEP: GA ČR(CZ) GA16-07965S; GA MŠMT(CZ) LO1212; GA MŠMT ED0017/01/01
    Institucionální podpora: RVO:68081731
    Klíčová slova: chemical analysis * Raman spectroscopy * emission spectroscopy * light transmission
    Obor OECD: Optics (including laser optics and quantum optics)

    Optofluidics, a research discipline combining optics with microfluidics, currently aspires to revolutionize the analysis of biological and chemical samples e.g. for medicine, pharmacology, or molecular biology. In order to detect low concentrations of analytes in water, we developed an optofluidic device containing a nanostructured substrate for surface enhanced Raman spectroscopy (SERS). The geometry of the gold surface allows localized plasmon oscillations to give rise to the SERS effect, in which the Raman spectral lines are intensified by the interaction of the plasmonic field with the electrons in the molecular bonds. The SERS substrate was enclosed in a microfluidic system, which allowed transport and precise mixing of the analyzed fluids, while preventing contamination or abrasion of the highly sensitive substrate. To illustrate its practical use, we employed the device for quantitative detection of persistent environmental pollutant 1,2,3-trichloropropane in water in millimolar and even submillimolar concentrations. The developed sensor allows fast and simple quantification of halogenated compounds and it will contribute towards the environmental monitoring and enzymology experiments with engineered haloalkane dehalogenase enzymes.
    Trvalý link: http://hdl.handle.net/11104/0313571

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.