Počet záznamů: 1  

The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine

  1. 1.
    0532030 - ÚFCH JH 2021 RIV GB eng J - Článek v odborném periodiku
    Escobar, J. G. - Vaněčková, Eva - Nováková Lachmanová, Štěpánka - Vivaldi, F. - Heyda, J. - Kubišta, Jiří - Shestivska, Violetta - Španěl, Patrik - Schwarzová-Pecková, K. - Rathouský, Jiří - Sebechlebská, Táňa - Kolivoška, Viliam
    The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine.
    Electrochimica acta. Roč. 360, NOV 2020 (2020), č. článku 136984. ISSN 0013-4686. E-ISSN 1873-3859
    Grant CEP: GA ČR(CZ) GA19-12109S; GA ČR(CZ) GA18-09848S; GA MŠMT(CZ) LM2018124
    Institucionální podpora: RVO:61388955
    Klíčová slova: 3D printing * Carbon dioxide * Electrochemical measurements * Hydrazine * Numerical simulations
    Obor OECD: Physical chemistry
    Impakt faktor: 6.901, rok: 2020
    Způsob publikování: Omezený přístup

    The combination of computer assisted design and 3D printing has recently enabled fast and inexpensive manufacture of customized ‘reactionware’ for broad range of electrochemical applications. In this work bi-material fused deposition modeling 3D printing is utilized to construct an integrated platform based on a polyamide electrochemical cell and electrodes manufactured from a polylactic acid-carbon nanotube conductive composite. The cell contains separated compartments for the reference and counter electrode and enables reactants to be introduced and inspected under oxygen-free conditions. The developed platform was employed in a study investigating the electrochemical oxidation of aqueous hydrazine coupled to its bulk reaction with carbon dioxide. The analysis of cyclic voltammograms obtained in reaction mixtures with systematically varied composition confirmed that the reaction between hydrazine and carbon dioxide follows 1/1 stoichiometry and the corresponding equilibrium constant amounts to (2.8 ± 0.6) × 103. Experimental characteristics were verified by results of numerical simulations based on the finite-element-method.
    Trvalý link: http://hdl.handle.net/11104/0310632

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0532030.pdf51.2 MBVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.