Počet záznamů: 1  

Chaos in delay-induced Leslie–Gower prey–predator–parasite model and its control through prey harvesting

  1. 1.
    0507952 - MÚ 2021 RIV GB eng J - Článek v odborném periodiku
    Adak, D. - Bairagi, N. - Hakl, Robert
    Chaos in delay-induced Leslie–Gower prey–predator–parasite model and its control through prey harvesting.
    Nonlinear Analysis: Real World Applications. Roč. 51, February (2020), č. článku 102998. ISSN 1468-1218
    Institucionální podpora: RVO:67985840
    Klíčová slova: chaos * eco-epidemiological model * Hopf bifurcationLocal & global stability
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Applied mathematics
    Impakt faktor: 2.085, rok: 2018
    https://doi.org/10.1016/j.nonrwa.2019.102998

    In this paper we analyze a delay-induced predator–prey–parasite model with prey harvesting, where the predator–prey interaction is represented by Leslie–Gower type model with type II functional response. Infection is assumed to spread horizontally from one infected prey to another susceptible prey following mass action law. Spreading of disease is not instantaneous but mediated by a time lag to take into account the time required for incubation process. Both the susceptible and infected preys are subjected to linear harvesting. The analysis is accomplished in two phases. First we analyze the delay-induced predator–prey–parasite system in absence of harvesting and proved the local & global dynamics of different (six) equilibrium points. It is proved that the delay has no influence on the stability of different equilibrium points except the interior one.
    Trvalý link: http://hdl.handle.net/11104/0298917
    Název souboruStaženoVelikostKomentářVerzePřístup
    Hakl.pdf02 MBVydavatelský postprintvyžádat
     
Počet záznamů: 1