Počet záznamů: 1  

Elimination of Dissolved Fe3+ Ions from Water by Electrocoagulation.

  1. 1.
    0507033 - ÚCHP 2020 RIV US eng J - Článek v odborném periodiku
    Gaálová, Jana - Krystyník, Pavel - Dytrych, Pavel - Klusoň, Petr
    Elimination of Dissolved Fe3+ Ions from Water by Electrocoagulation.
    Journal of Sol-Gel Science and Technology. Roč. 88, č. 1 (2018), s. 49-56. ISSN 0928-0707
    Grant CEP: GA TA ČR TA04020130; GA MŠk(CZ) LM2015073
    Institucionální podpora: RVO:67985858
    Klíčová slova: water treatment * iron * electrocoagulation
    Kód oboru RIV: CI - Průmyslová chemie a chemické inženýrství
    Obor OECD: Chemical process engineering
    Impakt faktor: 1.986, rok: 2018

    Electrocoagulation (EC) was applied for elimination of dissolved Fe3+ ions from model contaminated water. Electrochemical experiments were performed using a coagulation set-up with the volume of storage tank of 50L. To represent inorganic contamination, FeCl(3)6H(2)O was chosen as a model pollutant. Its concentration was equal to 50mg/L. Experiments were carried out by circulating model effluent (1 pass) through the cell at a flow rate (40L/h) whilst operating the power supply in galvanostatic mode. Dosing concentration was varying by changing the input current between set points and holding for sufficient time for steady state to be reached and for a sample to be collected. The process using the steel electrode reached removal efficiency up to 99%, depending on pH, and proved to be very suitable for elimination of dissolved Fe3+ ions from water. However, electrochemical experiments using the aluminum electrode reached removal efficiency only up to 25%. The different efficiency of two anodes is probably due to lower adsorption capacity of hydrous aluminum oxide for iron ions in comparison to hydrous ferric oxides. Produced nanostructured flocs were subsequently filtered, dried, and characterized by N-2 physisorption, X-ray photoelectron spectroscopy, and scanning electron microscopy. Obtained characteristics synchronously demonstrate different tendencies of Al and Fe nanostructured flocs.
    Trvalý link: http://hdl.handle.net/11104/0298125
    Název souboruStaženoVelikostKomentářVerzePřístup
    0507033 .pdf22 MBAutorský postprintvyžádat
Počet záznamů: 1